A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New insights into the controversy of reactive mineral-controlled arsenopyrite dissolution and arsenic release. | LitMetric

New insights into the controversy of reactive mineral-controlled arsenopyrite dissolution and arsenic release.

Water Res

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China. Electronic address:

Published: September 2024

Serious arsenic (As) contaminations could commonly result from the oxidative dissolution of As-containing sulfide minerals, such as arsenopyrite (FeAsS). Pyrite (Py) and calcite (Cal) are two typically co-existing reactive minerals and represent different geological scenarios. Previous studies have shown that a high proportion of Py can generate a stronger galvanic effect and acid dissolution, thereby significantly promoting the release of arsenic. However, this conclusion overlooks calcite's antagonistic effect on the release of As in the natural environment. That antagonistic effect could remodel the linear relationship of pyrite on the oxidative dissolution of arsenopyrite, thus altering the environmental risk of As. We examined As release from arsenopyrite along a gradient of Py to Cal molar ratios (Py:Cal). The results showed that the lowest As release from arsenopyrite was surprisingly found in co-existing Py and Cal systems than in the singular Cal system, let alone in the singular Py system. This phenomenon indicated an interesting possibility of Py assistance to Cal inhibition of As release, though Py has always been regarded as a booster, also evidenced in this research, for As release from arsenopyrite. In singular systems of Py and Cal, As continued to be released for 60 days. However, in co-existing Py and Cal systems, As was released non-linearly in three stages over time: initial release (0-1 Day), immobilization (1-15 Days), and subsequent re-release (>15 Days). This is a new short-term natural attenuation stage for As, but over time, this stage gradually collapses. During the re-release stage (> 15 Days), a higher molar ratio of Py:Cal (increasing from 1:9 to 9:1) results in a lower rate constant k (mg·L·h) of As release (range from 0.0011 to 0.0002), and a higher abundance of secondary minerals formed (up to 26 mg/g goethite and hematite at Py: Cal=9:1). This demonstrates that increasing the Py:Cal molar ratio results in the formation of more secondary minerals which compensate for the higher potential antagonistic mechanisms generated by pyrites, such as acid dissolution and galvanic effect. These results explain the mechanisms of the high-risk characteristics of As both in acidic mine drainage and karst aquifers and discover the lowest risk in pyrite and calcite co-existing regions. Moreover, we emphasize that reactive minerals are important variables that can't be ignored in predicting As pollution in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122051DOI Listing

Publication Analysis

Top Keywords

release arsenopyrite
12
release
9
oxidative dissolution
8
pyrite calcite
8
reactive minerals
8
acid dissolution
8
co-existing cal
8
cal systems
8
molar ratio
8
secondary minerals
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!