Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Acute myocardial infarction (AMI) is a severe condition with high morbidity and mortality rates. This study aimed to identify hub genes potentially associated with AMI and assess their clinical utility in predicting AMI occurrence.
Methods: Gene microarray data were obtained from the Gene Expression Omnibus (GEO) database. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were conducted on samples from patients with AMI and control samples to identify modules significantly associated with AMI. GO and KEGG analyses were applied to investigate the potential functions of these hub genes. Lastly, the mendelian randomization (MR) method was applied to analyze the causal relationship between the hub gene TNF and AMI.
Results: 285 differentially expressed genes (DEGs) were identified through WCGNA and were clustered into 6 modules. The yellow module appeared most relevant to AMI. Further exploration through GO and KEGG pathway enrichment showed that key hub genes in the yellow module were linked to positive regulation of cytokine production, cytokine receptor binding, NF-kappa B signaling pathway, IL-17 signaling pathway, and TNF signaling pathway. The top 10 genes identified through Cytoscape software analysis were IL1B, TNF, TLR4, TLR2, FCGR3B, MMP9, CXCL8, TLR8, ICAM1, and JUK. Utilizing inverse variance weighting (IVW) analysis, we discovered a significant association between TNF and AMI risk, with an OR of 0.946 (95% CI = 0.911-0.984, p = 0.005).
Conclusions: The result of this study indicated that TNF, TLR2, TLR4, IL1B and FCGR3B may be potential biodiagnostic markers for AMI. TNF can inhibit inflammatory and oxidative stress responses in AMI, exerting a protective role in the heart.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257238 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305532 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!