Motivation: The burgeoning generation of single-cell or spatial multiomic data allows for the characterization of gene regulation networks (GRNs) at an unprecedented resolution. However, the accurate reconstruction of GRNs from sparse and noisy single-cell or spatial multiomic data remains challenging.
Results: Here, we present SCRIPro, a comprehensive computational framework that robustly infers GRNs for both single-cell and spatial multi-omics data. SCRIPro first improves sample coverage through a density clustering approach based on multiomic and spatial similarities. Additionally, SCRIPro scans transcriptional regulator (TR) importance by performing chromatin reconstruction and in silico deletion analyses using a comprehensive reference covering 1,292 human and 994 mouse TRs. Finally, SCRIPro combines TR-target importance scores derived from multiomic data with TR-target expression levels to ensure precise GRN reconstruction. We benchmarked SCRIPro on various datasets, including single-cell multiomic data from human B-cell lymphoma, mouse hair follicle development, Stereo-seq of mouse embryos, and Spatial-ATAC-RNA from mouse brain. SCRIPro outperforms existing motif-based methods and accurately reconstructs cell type-specific, stage-specific, and region-specific GRNs. Overall, SCRIPro emerges as a streamlined and fast method capable of reconstructing TR activities and GRNs for both single-cell and spatial multi-omic data.
Availability: SCRIPro is available at https://github.com/wanglabtongji/SCRIPro.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288411 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btae466 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!