Monitoring Enzymatic Reaction Kinetics and Activity Assays in Confined Nanospace.

Anal Chem

Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China.

Published: July 2024

Enzyme-mediating biotransformations commonly occur in micro- and nanospace, which is crucial to maintain the essential biochemical processes and physiological functions in living systems. Probing enzyme-catalytic reactions in a biomimetic fashion remains challenging due to the lack of competent tools and methodology. Here, we show that studying enzymatic reaction kinetics can be readily achieved by a well-designed solid-state nanopore. Using tyrosine as a classical substrate, we quantitatively characterize the catalytic activity of tyrosinase (TYR) and tyrosine decarboxylase (TDC) in a nanoconfined space. Tyrosine was first immobilized in the nanopipette, wherein the active sites of tyrosine were left unoccupied. When successively exposed to TYR and TDC, a two-step cascade reaction can spontaneously take place. In this process, the surface wettability and charge of the nanopipette stemming from the catalytic products can sensitively regulate ion transport and ionic current rectification behavior, which were monitored by ionic current signal. In this biomimetic scenario, we obtained the enzymatic reaction kinetics of monophenyl oxidase that were not previously actualized in the conventional macroenvironment. Significantly, TYR showed higher enzyme activity, with a value of 1.59 mM, which was lower than that measured in a free and open space (with a of 3.01 mM). This suggests that tyrosine should be the most appropriate substrate of TYR, thus improving our understanding of tyrosine-associated biochemical reactions. This work offers an applicable technical platform to mimic enzyme-mediated biotransformations and biometabolisms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c01901DOI Listing

Publication Analysis

Top Keywords

enzymatic reaction
12
reaction kinetics
12
ionic current
8
tyrosine
5
monitoring enzymatic
4
reaction
4
kinetics activity
4
activity assays
4
assays confined
4
confined nanospace
4

Similar Publications

Bacterial degradation of ubiquitous and persistent steroids such as steroid hormones is important for their removal from the environment. Initial studies of steroid degradation in anaerobic bacteria suggested that ring-cleaving hydrolases are involved in oxygen-independent sterane skeleton degradation. However, the enzymes involved in ring A cleavage of the common intermediate androsta-1,4-diene-3,17-dione have remained unknown.

View Article and Find Full Text PDF

γ-l-Glutamyl-S-allyl-l-cysteine (GSAC) is renowned for its flavor-modifying effects and beneficial biological activities. However, the level of GSAC decreases significantly during the processing of black garlic, and the pathways and degradation products resulting from this decline remain unclear. To investigate the potential transformation mechanisms of GSAC in black garlic, simulation systems for thermal decomposition, Maillard reactions, and enzymatic hydrolysis were established.

View Article and Find Full Text PDF

Background: Qi pi pill (QPP), which contains Renshen, Baizhu, Fuling, Gancao, Chenpi, Shanyao, Lianzi, Shanzha, Liushenqu, Maiya, and Zexie, was recommended for preventing and treating COVID-19 in Shandong Province (China). However, the mechanism by which QPP treats infectious diseases remains unclear. This study aims to investigate the therapeutic effect of QPP in vitro and on acute influenza infection in mice, exploring its mechanism of action against influenza A virus (IAV).

View Article and Find Full Text PDF

Prokaryotic heme biosynthesis in Gram-positive bacteria follows the coproporphyrin-dependent heme biosynthesis pathway. The last step in this pathway is catalyzed by the enzyme coproheme decarboxylase, which oxidatively transforms two propionate groups into vinyl groups yielding heme b. The catalytic reaction cycle of coproheme decarboxylases exhibits four different states: the apo-form, the substrate (coproheme)-bound form, a transient three-propionate intermediate form (monovinyl, monopropionate deuteroheme; MMD), and the product (heme b)-bound form.

View Article and Find Full Text PDF

Low levels of human norovirus (HuNoV) in food and environment present challenges for nucleic acid detection. This study reported an evaporation-enhanced hydrogel digital reverse transcription loop-mediated isothermal amplification (HD RT-LAMP) with interfacial enzymatic reaction for sensitive HuNoV quantification in food and water. By drying samples on a chamber array chip, HuNoV particles were enriched in situ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!