Chimeric antigen receptor (CAR)-T-cell therapy is one of the most effective immunotherapies. CAR-T-cell therapy has achieved great success in the treatment of hematological malignancies. However, due to the characteristics of solid malignant tumors, such as on-target effects, off-tumor toxicity, an immunosuppressive tumor microenvironment (TME), and insufficient trafficking, CAR-T-cell therapy for solid tumors is still in the exploration stage. Mesothelin (MSLN) is a molecule expressed on the surface of various solid malignant tumor cells that is suitable as a target of tumor cells with high MSLN expression for CAR-T-cell therapy. This paper briefly described the development of CAR-T cell therapy and the structural features of MSLN, and especially summarized the strategies of structure optimization of MSLN-targeting CAR-T-cells and the enhancement methods of MSLN-targeting CAR-T cell anti-tumor efficacy by summarizing some preclinical experiment and clinical trials. When considering MSLN-targeting CAR-T-cell therapy as an example, this paper summarizes the efforts made by researchers in CAR-T-cell therapy for solid tumors and summarizes feasible treatment plans by integrating the existing research results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258118 | PMC |
http://dx.doi.org/10.1007/s12672-024-01159-x | DOI Listing |
Front Immunol
January 2025
School of Medicine, Shanghai University, Shanghai, China.
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors.
View Article and Find Full Text PDFBiomark Res
January 2025
Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
Background: Lung cancer, particularly non-small cell lung cancer (NSCLC), has high recurrence rates and remains a leading cause of cancer-related death, despite recent advances in its treatment. Emerging therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown promise but face significant challenges in targeting solid tumors. This study investigated the potential of combining receptor tyrosine kinase-like orphan receptor 1 (ROR1)-targeting CAR-T cells with ferroptosis inducers to promote ferroptosis of tumor cells and enhance anti-tumor efficacy.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Orthopedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
Background: Chordoma is a slow-growing, primary malignant bone tumor that arises from notochordal tissue in the midline of the axial skeleton. Surgical excision with negative margins is the mainstay of treatment, but high local recurrence rates are reported even with negative margins. High-dose radiation therapy (RT), such as with proton or carbon ions, has been used as an alternative to surgery, but late local failure remains a problem.
View Article and Find Full Text PDFTransplant Cell Ther
January 2025
Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
Background: While immune effector cell-associated neurotoxicity syndrome (ICANS) is a well-defined adverse effect associated with chimeric antigen receptor-modified T cell (CAR-T) therapy, some patients develop prolonged neurologic symptoms. Few studies have examined characteristics and outcomes of patients who develop such symptoms.
Objective: To provide an analysis of patients who developed ICANS in a single-center cohort of patients with large B-cell lymphoma (LBCL) who received commercial CAR-T and compare characteristics and outcomes between patients with vs.
Cytotherapy
January 2025
Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
Background Aims: Hypophosphatemia has been recently recognized adverse event in chimeric antigen receptor (CAR)-T cell therapy, complicating 70-75% of patients. Severe hypophosphatemia can cause cytokine release syndrome (CRS)-like symptoms, such as respiratory and cardiovascular dysfunction. Some reports have described the association between inorganic phosphate (iP) and CRS in patients treated with tisagenlecleucel (tisa-cel), lisocabtagene maraleucel (liso-cel), axicabtagene ciloleucel (axi-cel).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!