Chlororaphens A and B are structurally unique non-canonical C sesquiterpenoids from Pseudomonas chlororaphis that are made by two SAM-dependent methyltransferases and a type I terpene synthase. This study addresses the mechanism of their formation in isotopic labelling experiments and DFT calculations. The results demonstrate an astonishing complexity with distribution of labellings within a cyclopentane core that is reversely connected to two acyclic fragments in chlororaphen A and B. In addition, the uptake of up to 14 deuterium atoms from DO was observed. These findings are explainable by a repeated late stage multistep rearrangement sequence. The absolute configurations of the chlororaphens and their biosynthetic intermediates were elucidated in stereoselective labelling experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202412040 | DOI Listing |
Angew Chem Int Ed Engl
October 2024
Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany.
Chlororaphens A and B are structurally unique non-canonical C sesquiterpenoids from Pseudomonas chlororaphis that are made by two SAM-dependent methyltransferases and a type I terpene synthase. This study addresses the mechanism of their formation in isotopic labelling experiments and DFT calculations. The results demonstrate an astonishing complexity with distribution of labellings within a cyclopentane core that is reversely connected to two acyclic fragments in chlororaphen A and B.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany.
The biosynthesis of six recently reported non-canonical C sesquiterpenoids named after ancient Greek philosophers, archimedene, aristotelene, eratosthenene, pythagorene, α-democritene and anaximandrene, was investigated through density functional theory (DFT) calculations and isotopic labeling experiments. The results revealed for all compounds except archimedene a unique fragmentation-recombination mechanism as previously demonstrated for sodorifen biosynthesis, in addition to a remarkable "dancing" mechanism for anaximandrene biosynthesis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2024
Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, 44430, Guadalajara, Jalisco, Mexico. Electronic address:
Renin-Angiotensin System (RAS) is a peptidergic system, canonically known for its role in blood pressure regulation. Furthermore, a non-canonical RAS regulates pathophysiological phenomena, such as inflammation since it consists of two main axes: the pro-inflammatory renin/(pro)renin receptor ((P)RR) axis, and the anti-inflammatory angiotensin-converting enzyme 2 (ACE2)/Angiotensin-(1-7) (Ang-(1-7))/Mas Receptor (MasR) axis. Few phytochemicals have shown to exert angiotensinergic and anti-inflammatory effects through some of these axes; nevertheless, anti-inflammatory drugs, such as phytocannabinoids have not been studied regarding this subject.
View Article and Find Full Text PDFMycotoxin Res
August 2023
Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany.
Deoxynivalenol is present in forage crops in concentrations that endanger animal welfare but is also found in cereal-based food. The amphipathic nature of mycotoxins allows them to cross the cell membrane and interacts with different cell organelles such as mitochondria and ribosomes. In our study, we investigated the gene expression of several genes in vivo and in vitro that are related to the metabolism.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
February 2023
Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
Terpenoids represent the largest structural family of natural products (NPs) and have various applications in the pharmaceutical, food and fragrance industries. Their diverse scaffolds are generated via a multi-step cyclization cascade of linear isoprene substrates catalysed by terpene synthases (TPSs). Bisabolene NPs, which are sesquiterpenes (C15), have wide applications in medicines and biofuels and serve as bioactive substances in ecology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!