AI Article Synopsis

  • In mitochondria, excess hydrogen sulfide (HS) is detoxified through an oxidation process facilitated by the enzyme SOD1, which uses copper and zinc.
  • The study introduces synthetic Ni(II) complexes with a terminal SH group as alternatives to SOD1 for sulfide oxidation.
  • The synthesis, structure, and spectroscopic analysis of these complexes were detailed, and their catalytic reactions were evaluated under anaerobic conditions, comparing their reactivity to that of the native SOD1 enzyme.

Similar Publications

The mechanism of autoreduction in Dehaloperoxidase-A.

Biochem Biophys Res Commun

December 2024

Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA. Electronic address:

Hemoglobin and myoglobin are known to undergo autoxidation, in which the oxyferrous form of the heme is oxidized to the ferric state by O. Dehaloperoxidase-A (DHP-A), a multifunctional catalytic hemoglobin from Amphitrite ornata is an exception and is observed to undergo the reverse process, during which the ferric heme is spontaneously reduced to the oxyferrous form under aerobic conditions. The high reduction potential of DHP (+202 mV at pH 7.

View Article and Find Full Text PDF

Currently, the main limitations of Pd-coated Nb-TiFe dual-phase alloys include insufficient hydrogen permeability, susceptibility to hydrogen embrittlement (HE), and poor tolerance of HS poisoning. To address these issues, this study proposes a series of improvements. First, a novel NbTiFe alloy composed of a well-aligned Nb-TiFe eutectic was successfully prepared using directional solidification (DS) technology.

View Article and Find Full Text PDF

Nitrogenase is the enzyme primarily responsible for reducing atmospheric nitrogen to ammonia. There are three general forms of nitrogenase based on the metal ion present in the cofactor binding site, namely, molybdenum-dependent nitrogenases with the iron-molybdenum cofactor (FeMoco), the vanadium-dependent nitrogenases with FeVco, and the iron-only nitrogenases. It has been shown that the vanadium-dependent nitrogenases tend to have a lesser efficacy in reducing dinitrogen but a higher efficacy in binding and reducing carbon monoxide.

View Article and Find Full Text PDF

Enhanced oxidative potential and SO heterogeneous oxidation on candle soot after photochemical aging: Influencing mechanisms of different irradiation wavelengths.

Environ Pollut

December 2024

School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China; Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Jiangsu 213164, China. Electronic address:

Photochemistry plays a significant role in the atmospheric aging processes of soot. However, the physicochemical properties and changes in environmental and health effects of soot particles from sacrificial sources after photochemical aging remain unclear. The reaction mechanisms of soot under different irradiation wavelengths require further investigation.

View Article and Find Full Text PDF

Collaborative Reduction-Induced Nickel-Catalytic Selective C-S Coupling of Aryl Di/Trithiosulfonates with Aryl Halides.

Org Lett

December 2024

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China.

Metal-catalytic conversion of polysulfide reagents is a major challenge in organic synthesis due to its challenging activation modes of multiple S-S bonds. The utilization of aryl di- and trithiosulfonates in nickel-catalyzed reductive coupling with aryl halides has been unexplored. Herein, we unprecedentedly describe PPh and Zn-collaborative reduction-induced nickel-catalytic selective C-S coupling of aryl di/trithiosulfonates with aryl halides to access sulfides over common disulfides or trisulfides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!