Molecular Orientation-Dependent Photonic Polarization Engineering in Organic Single-Crystal-Filled Microcavities.

J Phys Chem Lett

Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China.

Published: July 2024

Designing the polarization degree of freedom of light is crucial in many fields and has widespread application in, for example, all-optical circuits. In this work, we find that in an organic microcavity filled with anisotropic single crystals the cavity modes can be modulated to be elliptically polarized, i.e., partially circularly polarized and partially linearly polarized. The circular polarization component originates from the Rashba-Dresselhaus spin splitting, while the linear polarization component is due to the dislocation of linearly polarized modes. The dislocation of the linear polarizations is ascribed to the orientation of individual molecules and the molecular packing arrangement; hence, the linear polarizations can be controlled by properly structuring the molecular distributions. Our results pave the way for enriching and engineering the polarization properties of individual optical cavity modes in organic microstructures, which may favor the development of polarized lasers with various polarizations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c01178DOI Listing

Publication Analysis

Top Keywords

cavity modes
8
polarized partially
8
linearly polarized
8
polarization component
8
linear polarizations
8
polarization
5
polarized
5
molecular orientation-dependent
4
orientation-dependent photonic
4
photonic polarization
4

Similar Publications

Enhancement of quantum synchronization in triple-cavity system.

Sci Rep

January 2025

School of Physics and Optoelectronics, Xiangtan University, Xiangtan, 411105, China.

We introduce two strategies to enhance quantum synchronization within a triple-cavity optomechanical system, where each cavity contains an oscillator and is interconnected via optical fibers. Our results demonstrate that applying appropriate periodic modulation to the driving fields or the cavity modes can ensure robust quantum synchronization across both open and closed configurations. This approach offers promising avenues for expanding quantum synchronization capabilities in multi-cavity systems and has significant implications for advancing quantum synchronization generation and application in complex networks.

View Article and Find Full Text PDF

Experimental investigation and finite element analysis on the durability of root-filled teeth treated with multisonic irrigation.

Dent Mater

January 2025

Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA. Electronic address:

Objective: This study compared the fracture load, stress distribution, and survival probability under cyclic loading of extensively restored teeth treated with multisonic irrigation with those treated with conventional instrumentation, with or without a post.

Methods: Mesial-occlusal-distal cavities were prepared in 30 human mandibular premolars. The teeth were randomly divided into 3 groups of 10 based on the endodontic and restorative procedures: (1) Root canal treatment (RCT) followed by resin composite restoration (control group), (2) RCT followed by a glass fiber post restoration (conventional group), and (3) minimal instrumentation plus multisonic irrigation followed by resin composite restoration (GW group).

View Article and Find Full Text PDF

Roles of in human health: beyond dental caries.

Front Microbiol

December 2024

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.

() is the main pathogenic bacterium causing dental caries, and the modes in which its traits, such as acid production, acid tolerance, and adhesion that contribute to the dental caries process, has been clarified. However, a growing number of animal experiments and clinical revelations signify that these traits of are not restricted to the detriment of dental tissues. These traits can assist in evading the immune system within body fluids; they empower to adhere not merely to the surface of teeth but also to other tissues such as vascular endothelium; they can additionally trigger inflammatory reactions and inflict damage on various organs, thereby leading to the occurrence of systemic diseases.

View Article and Find Full Text PDF

In this work, we investigate anharmonic vibrational polaritons formed due to strong light-matter interactions in an optical cavity between radiation modes and anharmonic vibrations beyond the long-wavelength limit. We introduce a conceptually simple description of light-matter interactions, where spatially localized cavity radiation modes couple to localized vibrations. Within this theoretical framework, we employ self-consistent phonon theory and vibrational dynamical mean-field theory to efficiently simulate momentum-resolved vibrational-polariton spectra, including effects of anharmonicity.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the effect of chlorhexidine (CHX) cavity disinfectant on interfacial microleakage and micro-tensile bond strength (μTBS) of a universal adhesive bonded to dentin in both self-etch (SE) and etch-and-rinse (ER) modes.

Methods: Class I cavities were prepared in the coronal dentin of extracted human teeth and assigned to two etching modes (SE or ER), then subdivided by disinfection with or without CHX (n = 5). Cavities were restored using Single Bond Universal Adhesive and Filtek Z350 XT composite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!