Acute myocardial infarction (AMI) is one of the major causes of death worldwide, posing significant global health challenges. Circular RNA (circRNA) has recently emerged as a potential diagnostic biomarker for AMI, providing valuable information for timely medical care. In this work, a new electrochemical method for circRNA detection by engineering a collaborative CRISPR-Cas system is developed. This system integrates the unique circRNA-targeting ability with cascade trans-cleavage activities of Cas effectors, using an isothermal primer exchange reaction as the bridge. Using cZNF292, a circulating circRNA biomarker for AMI is identified by this group; as a model, the collaborative CRISPR-Cas system-based method exhibits excellent accuracy and sensitivity with a low detection limit of 2.13 × 10 m. Moreover, the method demonstrates a good diagnostic performance for AMI when analyzing whole blood samples. Therefore, the method may provide new insight into the detection of circRNA biomarkers and is expected to have great potential in AMI diagnosis in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202402895 | DOI Listing |
PLoS Negl Trop Dis
January 2025
Department of Zoology and Environment Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka.
Background: Leishmaniasis is a health problem in many regions with poor health and poor life resources. According to the World Health Organization (WHO), an estimated 700,000-1 million new cases arise annually. Effective control of sand fly vector populations is crucial for reducing the transmission of this disease.
View Article and Find Full Text PDFMicroorganisms
January 2025
Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
The pervasive and often indiscriminate use of antibiotics has accelerated the emergence of drug-resistant bacterial strains, thus presenting an acute threat to global public health. Despite a growing acknowledgment of the severity of this crisis, the current suite of strategies to mitigate antimicrobial resistance remains markedly inadequate. This paper asserts the paramount need for the swift development of groundbreaking antimicrobial strategies and provides a comprehensive review of an array of innovative techniques currently under scrutiny.
View Article and Find Full Text PDFJ Plant Physiol
January 2025
Department of Botany, University of Delhi, New Delhi, 110007, Delhi, India. Electronic address:
As our planet faces increasing environmental challenges, such as biotic pressures, abiotic stressors, and climate change, it is crucial to understand the complex mechanisms that underlie stress responses in crop plants. Over past few years, the integration of techniques of proteomics, transcriptomics, and genomics like LC-MS, IT-MS, MALDI-MS, DIGE, ESTs, SAGE, WGS, GWAS, GBS, 2D-PAGE, CRISPR-Cas, cDNA-AFLP, HLS, HRPF, MPSS, CAGE, MAS, IEF, MudPIT, SRM/MRM, SWATH-MS, ESI have significantly enhanced our ability to comprehend the molecular pathways and regulatory networks, involved in balancing the ecosystem/ecology stress adaptation. This review offers thorough synopsis of the current research on utilizing these multi-omics methods (including metabolomics, ionomics) for battling abiotic (salinity, temperature (chilling/freezing/cold/heat), flood (hypoxia), drought, heavy metals/loids), biotic (pathogens like fungi, bacteria, virus, pests, and insects (aphids, caterpillars, moths, mites, nematodes) and climate change stress (ozone, ultraviolet radiation, green house gases, carbon dioxide).
View Article and Find Full Text PDFPlant Mol Biol
January 2025
College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
The lipoxygenase (LOX) gene family is widely distributed in plants, and its activity is closely associated with seed viability and stress tolerance. In this study, we cloned the rice(Oryza sativa)lipoxygenase gene OsLOX1, a key participant in the 13-lipoxygenase metabolic pathway. Our primary focus was to investigate its role in mediating responses to drought stress and seed germination in rice.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh.
Background: Brucellosis is a zoonotic disease caused by Brucella spp., affecting various animals and humans, leading to significant economic and public health impacts. Traditional diagnostic methods, mainly serological, often fail to detect seronegative carriers, which continue to spread the infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!