The electrostatic environment around nanoscale molecular junctions modulates charge transport; solvents alter this environment. Methods to directly probe solvent effects require correlating measurements of the local electrostatic environment with charge transport across the metal-molecule-metal junction. Here, we measure the conductance and current-voltage characteristics of molecular wires using a scanning tunneling microscope-break junction (STM-BJ) setup in two commonly used solvents. Our results show that the solvent environment induces shifts in molecular conductance, which we quantify, but more importantly we find that the solvent also impacts the magnitude of current rectification in molecular junctions. By incorporating electrochemical impedance spectroscopy into the STM-BJ setup, we measure the capacitance of the dipole layer formed at the metal-solvent interface and show that rectification can be correlated with solvent capacitance. These results provide a method of quantifying the impact of the solvent environment and a path toward improved environmental control of molecular devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c02103 | DOI Listing |
J Phys Chem Lett
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
Efficient capture of single-stranded DNA (ssDNA) is crucial for high-throughput sequencing, which influences the speed and accuracy of genetic analysis. Electrophoresis (EP) and electro-osmotic flow (EOF) have a significant impact on the translocation behavior of ssDNA through the nanopore. Experimentally, dynamically tracking these two effects remains challenging, and conventional numerical methods also struggle to capture their dynamic properties in the presence of DNA.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China. Electronic address:
The acidophilic and heat-resistant characteristics of Alicyclobacillus acidoterrestris (A. acidoterrestris) pose significant challenges to fruit juice production. Traditional thermal removal methods are often ineffective against this resilient bacterium.
View Article and Find Full Text PDFFood Res Int
January 2025
School of Food and Biological Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China. Electronic address:
Atmosphere-controlled high-voltage electrospray (AHES) was utilised to modify the structure of chitosan (CS) films. The applied voltage in the AHES process ranged from 60 to 100 kV, with variations in the O content of the propellant gas from 0 to 100 %. The number density of cations in the charging environment reached 600 × 10 cations/cm.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China. Electronic address:
In this study, we developed a double-layer colon-targeted microcapsule. It used the Maillard product of gelatin-isomaltooligosaccharide (GI180) and zein-shellac complex (ZS) as bio-based materials, plant extracts (MPL) and Lactobacillus plantarum JJBYG12 (JJBYG12) were co-encapsulated, endowing them with strong resistance to harsh environments and precise intestinal adhesion and targeting ability. The research results indicated that ZS11 exhibits hydrogen bonding and electrostatic interactions.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Accounting and Finance, Nottingham Trent University, Nottingham, UK. Electronic address:
In the context of global sustainability goals, it is imperative to examine the interplay between emerging financial technologies and environmental objectives, which in turn offers insights into the implications of such technologies on sustainable investments and environmental policy decisions. Accordingly, this study investigates the influence of Bitcoin's energy consumption (BEC), as a representative of the cryptocurrency market, on the regional green economy indices of the United States, Europe, and Asia. Utilizing both unfiltered and filtered data, we conduct empirical analyses from both static and dynamic perspectives to account for the causal relationships that emerged during critical market developments, employing novel algorithms including forward recursive, rolling windows, and recursive rolling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!