[Research Progress of Functional Materials for Conversion of Agricultural Biomass Wastes].

Huan Jing Ke Xue

Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China.

Published: July 2024

Excess agricultural biomass waste is increasing rapidly, leading to many environmental and governance issues. Therefore, increased attention has been paid to the recycling and value-added application of agricultural biomass waste. In recent years, the research of agricultural biomass waste utilization and derived functional materials has mainly included the following two aspects: ① the extraction of natural polymers and value-added applications and ② the direct preparation of new carbon-based materials, including adsorption, catalysis, energy storage electrode, and composite functional materials. The conversion of agricultural biomass waste into functional materials has been gradually realized and widely used. To enable industrial-scale production and the quality and safety of agricultural biomass waste derivatives and to develop highly feasible and cost-effective biomass waste conversion methods should be the focus of future studies.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202307264DOI Listing

Publication Analysis

Top Keywords

agricultural biomass
24
biomass waste
24
functional materials
16
materials conversion
8
conversion agricultural
8
biomass
7
agricultural
6
waste
6
materials
5
[research progress
4

Similar Publications

Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.

View Article and Find Full Text PDF

Legume content (LC) in grass-legume mixtures is important for assessing forage quality and optimizing fertilizer application in meadow fields. This study focuses on differences in LC measurements obtained from unmanned aerial vehicle (UAV) images and ground surveys based on dry matter assessments in seven meadow fields in Hokkaido, Japan. We propose a UAV-based LC (LC) estimation and mapping method using a land cover map from a simple linear iterative clustering (SLIC) algorithm and a random forest (RF) classifier.

View Article and Find Full Text PDF

Plant Species Richness and the Root Economics Space Drive Soil Fungal Communities.

Ecol Lett

January 2025

Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany.

Trait-based approaches have been increasingly used to relate plants to soil microbial communities. Using the recently described root economics space as an approach to explain the structure of soil-borne fungal communities, our study in a grassland diversity experiment reveals distinct root trait strategies at the plant community level. In addition to significant effects of plant species richness, we show that the collaboration and conservation gradient are strong drivers of the composition of the different guilds of soil fungi.

View Article and Find Full Text PDF

Background And Objectives: Plant growth-promoting rhizobacteria (PGPR) with a diverse set of traits can improve crop yield in agriculture. The current study aimed to evaluate the potential of multi-trait PGPR isolates as inoculants for maize growth.

Materials And Methods: In this study, 23 bacterial isolates were initially screened from maize plant rhizosphere.

View Article and Find Full Text PDF

Advancing characterization of pyrolysis products: Comprehensive gas chromatography methods for analytes in gas and liquid phases.

J Chromatogr A

December 2024

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5. Electronic address:

The development of biofuel technologies depends on the accurate identification and quantification of products from the conversion processes. Given the complexity of the renewable resources, the availability of biomass, and the versatility of conversion methods, there is a need for characterization methods that provide rapid and reliable analysis for various products coming from different conversion processes with minimal sample preparation. This study develops and validates gas chromatography methods that use multiple detectors to analyze pyrolytic compounds in both gas and liquid phases efficiently in a single, rapid run.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!