[Spatial Prediction and Influencing Factors Analysis of Soil Salinization in Coastal Area Based on MGWR].

Huan Jing Ke Xue

Shandong Luyan Agricultural Co., Ltd., Jinan 250100, China.

Published: July 2024

Quantitative analysis of the spatial non-stationary characteristics of soil salinization influencing factors and the prediction of its spatial distribution are of great significance for the rational use of coastal saline soil resources and the formulation of local prevention and control measures. In this study, the Hekou District of Dongying City, Shandong Province, was used as the study area, and the descriptive statistics of soil salinization status were conducted using classical statistical methods. Spatial autocorrelation theory was used to explore the characteristics of global and local spatial structure of soil salinization in the study area. Influential factors related to soil salinity were selected, and multivariate linear regression (MLR), geographically weighted regression (GWR), and multi-scale geographically weighted regression (MGWR) methods were used to model and predict the spatial distribution of soil salinity in the study area and to analyze the spatial heterogeneity of the effects of different influencing factors on soil salinity. The results showed that: ① The mean value of soil salinity in the study area was 5.84 g·kg, indicating severe salinization, with a global Moran's index of 0.19 (<0.00) and obvious spatial aggregation characteristics. ② Among the three models, the MGWR model had the highest modeling accuracy. Compared with that of the MLR model, the of GWR and MGWR improved by 0.05 and 0.07, respectively, and the RSS decreased by 210.13 and 179.95, respectively. ③ The results of MGWR regression showed that the spatial distribution of soil salinity appeared to be mainly affected by the middle soil salinity, soil clay content, and vegetation cover from the mean values of standardized regression coefficients of different influencing factors. Different influencing factors had significant spatial non-stationary characteristics on soil salinization. ④ The results of the spatial distribution prediction of soil salinity in MGWR showed that the areas of high soil salinity (≥6 g·kg) were mainly distributed in the northern part of the study area, with an overall spatial trend of decreasing from the coast to the interior. The results of the study can be used as a reference for the analysis and predictive mapping of factors affecting soil salinization in the county and on a larger scale using MGWR.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202307195DOI Listing

Publication Analysis

Top Keywords

soil salinization
16
study area
16
soil salinity
16
influencing factors
12
soil
9
spatial distribution
8
factors soil
8
geographically weighted
8
weighted regression
8
salinity study
8

Similar Publications

Molecular Mechanisms of Humic Acid in Inhibiting Silica Scaling during Membrane Distillation.

Environ Sci Technol

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.

Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.

View Article and Find Full Text PDF

Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold.

iScience

January 2025

Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.

This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process.

View Article and Find Full Text PDF

Background: Salinity stress is a significant challenge in agriculture, particularly in regions where soil salinity is increasing due to factors such as irrigation practices and climate change. This stress adversely affects plant growth, development, and yield, posing a threat to the cultivation of economically important plants like . This study aims to evaluate the effectiveness by proactively applying indole-3-butyric acid (IBA) to cuttings as a practical and efficient method for mitigating the adverse effects of salinity stress.

View Article and Find Full Text PDF

As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.

View Article and Find Full Text PDF

Introduction: Functional traits of desert plants exhibit remarkable responsiveness, adaptability and plasticity to environmental heterogeneity.

Methods: In this study, we measured six crucial plant functional traits (leaf carbon, leaf nitrogen, leaf phosphorus, leaf thickness, chlorophyll concentration, and plant height) and employed exemplar analysis to elucidate the effects of soil environmental heterogeneity on intraspecific traits variation in the high-moisture-salinity and low-moisture-salinity habitats of the Ebinur LakeWetland National Nature Reserve.

Results: The results showed that (1) The soil moisture and electrical conductivity heterogeneity showed significant differences between the two moisture-salinity habitats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!