Microplastics are among the most difficult new pollutants to remove in wastewater treatment plants. In order to explore the occurrence form, size distribution, composition, removal efficiency, migration law, and fate behavior characteristics of microplastic particles in sewage plants, taking a sewage treatment plant in Hohhot as an example, a total of 17 sampling sites were set up. The LAS X software counted the shape, abundance, and size of microplastics and conducted a full-process analysis. The results showed that: fibrous microplastics had the highest abundance and widest distribution and were the main form of existence, accounting for 61.8% of the total abundance; the size of microplastics ranged mainly between 0 and 1.00 mm, and among the four sizes, the abundance of microplastics 0.25 to 0.50 mm in China was the highest, accounting for 32.9%. Among the eight types of plastic components detected, polyester substances (PET, PBT), cellulose, and polypropylene (PP) were the main components, accounting for 25%, 21%, and 17%, respectively. The influent abundance of the sewage plant was (73 ±5) n·L, the effluent abundance was (14 ±2) n·L, and the overall removal rate was (80.8 ±12.1)%. Among the three treatment stages of the sewage plant, only the primary treatment played a role in removal, and the abundance of microplastics surged in the secondary treatment. Different structures playing a major role in the removal of microplastics were fine grids (49.2 ±7.4)% and secondary sedimentation tanks (92.4 ±13.9)%. Microplastics mainly existed in the form of fibers, fragments, and films. The proportion of fibers was approximately 70%, and the size of fragments was mainly concentrated between 0.50 and 5.00 mm. Most fragments were in the range of 5.00 mm, accounting for 50%, making them the main form apart from fibrous. The film-like size was mostly concentrated in the range of less than 0.50 mm, accounting for more than 10%. Therefore, improving the removal of small-sized fibrous and film-like microplastics and large-sized fragmented microplastic particles can effectively reduce the pollution risk of microplastics in the environment caused by sewage plant drainage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202305177 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!