Deamidation frequently is invoked as an important driver of crystallin aggregation and cataract formation. Here, we characterized the structural and biophysical consequences of cumulative Asn to Asp changes in γD-crystallin. Using NMR spectroscopy, we demonstrate that N- or C-terminal domain-confined or fully Asn to Asp changed γD-crystallin exhibits essentially the same H-N HSQC spectrum as the wild-type protein, implying that the overall structure is retained. Only a very small thermodynamic destabilization for the overall Asn to Asp γD-crystallin variants was noted by chaotropic unfolding, and assessment of the colloidal stability, by measuring diffusion interaction parameters, yielded no substantive differences in association propensities. Furthermore, using molecular dynamics simulations, no significant changes in dynamics for proteins with Asn to Asp or iso-Asp changes were detected. Our combined results demonstrate that substitution of all Asn by Asp residues, reflecting an extreme case of deamidation, did not affect the structure and biophysical properties of γD-crystallin. This suggests that these changes alone cannot be the major determinant in driving cataract formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255865 | PMC |
http://dx.doi.org/10.1002/pro.5120 | DOI Listing |
J Biomol Struct Dyn
January 2025
School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India.
In the realm of hospital-acquired and chronic infections, stands out, demonstrating significant associations with increased morbidity, mortality, and antibiotic resistance. Antibiotic-resistant strains are believed to contribute to thousands of deaths each year. Chronic and latent infections are associated with the bacterial toxin-antitoxin (TA) system, although the mechanisms involved are poorly understood.
View Article and Find Full Text PDFAnal Chem
January 2025
MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States.
Rapid identification of asparagine (Asn) deamidation and isoaspartate (Asp) in proteins remains a challenging analytical task during the development of biological therapeutics. For this study, 46 therapeutically relevant peptides corresponding to 13 peptide families (13 unmodified peptides and 33 modified peptides) were obtained; modified peptides included Asn deamidation and isoAsp. The peptide families were characterized by three methods: reversed-phase ultrahigh performance liquid chromatography-mass spectrometry (RP-UHPLC-MS); flow injection analysis high-resolution ion mobility-mass spectrometry (FIA-HRIM-MS); and shortened gradient RP-UHPLC-HRIM-MS.
View Article and Find Full Text PDFCommun Chem
December 2024
Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
Under physiological conditions in peptides or proteins, the -AsnGly- motif autonomously rearranges within hours/days to β-Asp and α-Asp containing sequence, via succinimide intermedier. The formation of the succinimide is the rate-limiting step, with a strong pH and temperature dependence. We found that Arg(+) at the (n + 2) position (relative to Asn in the n position) favors isomerisation by forming a transition-state like structure, whereas Glu(-) disfavors isomerisation by adopting a β-turn like conformer.
View Article and Find Full Text PDFAnim Nutr
December 2024
State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China.
Gln, one of the most abundant amino acids (AA) in the body, performs a diverse range of fundamental physiological functions. However, information about the role of dietary Gln on AA levels, transporters, protein synthesis, and underlying mechanisms in vivo is scarce. The present study aimed to explore the effects of low-crude protein diet inclusion with differential doses of L-Gln on intestinal AA levels, transporters, protein synthesis, and potential mechanisms in weaned piglets.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!