Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250150PMC
http://dx.doi.org/10.1002/bco2.373DOI Listing

Publication Analysis

Top Keywords

evaluating deep
4
deep learning
4
learning algorithm
4
algorithm detecting
4
detecting residual
4
residual prostate
4
prostate cancer
4
cancer mri
4
mri focal
4
focal therapy
4

Similar Publications

Background: Unplanned readmission, a measure of surgical quality, occurs after 4.8% of primary total knee arthroplasties (TKA). Although the prediction of individualized readmission risk may inform appropriate preoperative interventions, current predictive models, such as the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) surgical risk calculator (SRC), have limited utility.

View Article and Find Full Text PDF

Background: Early Childhood Education and Care (ECEC) centers play an important role in fostering healthy dietary habits. The Nutrition Now project focusing on improving dietary habits during the first 1000 days of life. Central to the project is the implementation of an e-learning resource aimed at promoting feeding practices among staff and healthy dietary behaviours for children aged 0-3 years in ECEC.

View Article and Find Full Text PDF

Optimizing hip MRI: enhancing image quality and elevating inter-observer consistency using deep learning-powered reconstruction.

BMC Med Imaging

January 2025

Department of Magnetic Resonance Imaging, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.

Background: Conventional hip joint MRI scans necessitate lengthy scan durations, posing challenges for patient comfort and clinical efficiency. Previously, accelerated imaging techniques were constrained by a trade-off between noise and resolution. Leveraging deep learning-based reconstruction (DLR) holds the potential to mitigate scan time without compromising image quality.

View Article and Find Full Text PDF

Diagnosis and prognosis of melanoma from dermoscopy images using machine learning and deep learning: a systematic literature review.

BMC Cancer

January 2025

Department of Data Science, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.

Background: Melanoma is a highly aggressive skin cancer, where early and accurate diagnosis is crucial to improve patient outcomes. Dermoscopy, a non-invasive imaging technique, aids in melanoma detection but can be limited by subjective interpretation. Recently, machine learning and deep learning techniques have shown promise in enhancing diagnostic precision by automating the analysis of dermoscopy images.

View Article and Find Full Text PDF

Objectives: Pulp stones are ectopic calcifications located in pulp tissue. The aim of this study is to introduce a novel method for detecting pulp stones on panoramic radiography images using a deep learning-based two-stage pipeline architecture.

Materials And Methods: The first stage involved tooth localization with the YOLOv8 model, followed by pulp stone classification using ResNeXt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!