A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HiLo microscopy with caustic illumination. | LitMetric

HiLo microscopy with caustic illumination.

Biomed Opt Express

Department of Electrical & Computer Engineering, Boston University, Boston, Massachusetts 02215, USA.

Published: July 2024

HiLo microscopy is an optical sectioning structured illumination microscopy technique based on computationally combining two images: one with uniform illumination and the other with structured illumination. The most widely used structured illumination in HiLo microscopy is random speckle patterns, due to their simplicity and resilience to tissue scattering. Here, we present a novel HiLo microscopy strategy based on random patterns. Building on an off-the-shelf diffuser and a low-coherence LED source, we demonstrate that caustic HiLo can achieve 4.5 µm optical sectioning capability with a 20× 0.75 NA objective. In addition, with the distinct intensity statistical properties of caustic patterns, we show that our caustic HiLo outperforms speckle HiLo, achieving enhanced optical sectioning capability and preservation of fine features by imaging scattering fixed brain sections of 100 µm, 300 µm, and 500 µm thicknesses. We anticipate that this new structured illumination technique may find various biomedical imaging applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249696PMC
http://dx.doi.org/10.1364/BOE.527264DOI Listing

Publication Analysis

Top Keywords

hilo microscopy
16
structured illumination
16
optical sectioning
12
illumination hilo
8
illumination structured
8
caustic hilo
8
sectioning capability
8
hilo
7
illumination
6
caustic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!