Introduction: Infection with SARS-CoV-2 virus may result in long COVID, a syndrome characterized by symptoms such as dyspnea, cardiac abnormalities, cognitive impairment, and fatigue. One potential explanation for these symptoms is hypocortisolism.
Objective: To evaluate the prevalence of hypocortisolism in patients with a history of COVID-19 pneumonia.
Methods: Cross-sectional study of patients who were aged ≥18 years and had a 3-month history of radiography-confirmed COVID-19 pneumonia. Exclusion criteria included current or previous treatment with glucocorticoids and use of an oral contraceptive. Adrenal function was evaluated using a low dose (1ug) corticotropin stimulation test (CST). Serum cortisol levels were measured at 0, 30, and 60 minutes, and baseline plasma ACTH was also measured.
Results: Of the 41 patients enrolled, the median age was 62 years, 17 (42%) were female, and all 41 (100%) had severe pneumonia at baseline. Eleven patients (27%) had hypocortisolism, as evidenced by peak cortisol of less than 402.81 nmol/l after low dose (1 µg) CST. Of these 11 patients, 10 (91%) had secondary hypocortisolism (median ACTH 6.27 pmol/L, range 4.98-9.95 pmol/L) and one had primary hypocortisolism (mean ACTH 32.78 pmol/L). Six of the 11 patients with hypocortisolism (54.5%) reported symptoms of persistent fatigue and 5 (45.5%) required regular glucocorticoid replacement.
Conclusions: Our results suggest that hypocortisolism, predominantly caused by pituitary disruption, may emerge after SARS-CoV-2 infection and should be considered in patients with a history of COVID-19 pneumonia with or without clinical hypocortisolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251879 | PMC |
http://dx.doi.org/10.3389/fendo.2024.1337652 | DOI Listing |
Virol J
January 2025
Department of Pediatric, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China.
Background: Mycoplasma pneumoniae (MP) is a common pathogen for respiratory infections in children. Previous studies have reported respiratory tract microbial disturbances associated with MP infection (MPI); however, since the COVID-19 pandemic, respiratory virome data in school-aged children with MPI remains insufficient. This study aims to explore the changes in the respiratory virome caused by MPI after the COVID-19 pandemic to enrich local epidemiological data.
View Article and Find Full Text PDFSci Rep
January 2025
EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia.
During the Covid-19 pandemic, the widespread use of social media platforms has facilitated the dissemination of information, fake news, and propaganda, serving as a vital source of self-reported symptoms related to Covid-19. Existing graph-based models, such as Graph Neural Networks (GNNs), have achieved notable success in Natural Language Processing (NLP). However, utilizing GNN-based models for propaganda detection remains challenging because of the challenges related to mining distinct word interactions and storing nonconsecutive and broad contextual data.
View Article and Find Full Text PDFSci Rep
January 2025
Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, GB, United Kingdom.
SARS-CoV-2 is the viral pathogen responsible for COVID-19. Although morbidity and mortality frequently occur as a result of lung disease, the gastrointestinal (GI) tract is recognized as a primary location for SARS-CoV-2. Connections and interactions between the microbiome of the gut and respiratory system have been linked with viral infections via what has been referred to as the 'gut-lung axis' with potential aerodigestive communication in health and disease.
View Article and Find Full Text PDFNPJ Syst Biol Appl
January 2025
BIH Center for Regenerative Therapies (BCRT), Julius Wolff Institute (JWI), and Berlin Institute of Health (BIH); all Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117, Berlin, Germany.
Coronavirus disease 2019 (COVID-19) presents a wide spectrum of symptoms, the causes of which remain poorly understood. This study explored the associations between autoantibodies (AABs), particularly those targeting G protein-coupled receptors (GPCRs) and renin‒angiotensin system (RAS) molecules, and the clinical manifestations of COVID-19. Using a cross-sectional analysis of 244 individuals, we applied multivariate analysis of variance, principal component analysis, and multinomial regression to examine the relationships between AAB levels and key symptoms.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
Microthrombus formation is associated with COVID-19 severity; however, the detailed mechanism remains unclear. In this study, we investigated mouse models with severe pneumonia caused by SARS-CoV-2 infection by using our in vivo two-photon imaging system. In the lungs of SARS-CoV-2-infected mice, increased expression of adhesion molecules in intravascular neutrophils prolonged adhesion time to the vessel wall, resulting in platelet aggregation and impaired lung perfusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!