AI Article Synopsis

  • - Fragile X syndrome (FXS) is a leading inherited cause of intellectual disability and is linked to autism, primarily due to deficiencies in a specific protein coded by a gene.
  • - The disorder is associated with various behavioral and brain structure issues, including problems with learning and memory, caused by abnormalities in synaptic structures.
  • - Recent research highlights the role of synaptic cell adhesion molecules (CAMs) in FXS, detailing how they contribute to changes in dendritic spines and synaptic functionality, offering new insights into the underlying mechanisms of the disorder.

Article Abstract

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a monogenic cause of autism spectrum disorders. Deficiencies in the fragile X messenger ribonucleoprotein, encoded by the gene, lead to various anatomical and pathophysiological abnormalities and behavioral deficits, such as spine dysmorphogenesis and learning and memory impairments. Synaptic cell adhesion molecules (CAMs) play crucial roles in synapse formation and neural signal transmission by promoting the formation of new synaptic contacts, accurately organizing presynaptic and postsynaptic protein complexes, and ensuring the accuracy of signal transmission. Recent studies have implicated synaptic CAMs such as the immunoglobulin superfamily, N-cadherin, leucine-rich repeat proteins, and neuroligin-1 in the pathogenesis of FXS and found that they contribute to defects in dendritic spines and synaptic plasticity in FXS animal models. This review systematically summarizes the biological associations between nine representative synaptic CAMs and FMRP, as well as the functional consequences of the interaction, to provide new insights into the mechanisms of abnormal synaptic development in FXS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252757PMC
http://dx.doi.org/10.3389/fncel.2024.1393536DOI Listing

Publication Analysis

Top Keywords

synaptic cell
8
cell adhesion
8
adhesion molecules
8
fragile syndrome
8
signal transmission
8
synaptic cams
8
synaptic
7
molecules contribute
4
contribute pathogenesis
4
pathogenesis progression
4

Similar Publications

The role of macroautophagy in substance use disorders.

Ann N Y Acad Sci

December 2024

Department of Medicine, School of Basic Medicine, Ningbo University, Ningbo, China.

Macroautophagy, a universal cellular process, sends cellular material to lysosomes for breakdown and is often activated by stressors like hypoxia or drug exposure. It is vital for protein balance, neurotransmitter release, synaptic function, and neuron survival. The role of macroautophagy in substance use disorders is dual.

View Article and Find Full Text PDF

Discrete Synaptic Events Induce Global Oscillations in Balanced Neural Networks.

Phys Rev Lett

December 2024

Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, CNRS, UMR 8089, 95302 Cergy-Pontoise cedex, France.

Despite the fact that neural dynamics is triggered by discrete synaptic events, the neural response is usually obtained within the diffusion approximation representing the synaptic inputs as Gaussian noise. We derive a mean-field formalism encompassing synaptic shot noise for sparse balanced neural networks. For low (high) excitatory drive (inhibitory feedback) global oscillations emerge via continuous or hysteretic transitions, correctly predicted by our approach, but not from the diffusion approximation.

View Article and Find Full Text PDF

Glucocorticoid-Dependent Retinal Degeneration and Vision Impairment in Mice Susceptible to Prenatal Stress-Induced Behavioral Abnormalities.

Cell Mol Neurobiol

December 2024

Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea.

Chronic exposure to prenatal stress can impair neurogenesis and lead to irreversible cognitive and neuropsychiatric abnormalities in offspring. The retina is part of the nervous system; however, the impacts of prenatal stress on retinal neurogenesis and visual function remain unclear. This study examined how elevated prenatal glucocorticoid levels differentially affect retinal development in the offspring of pregnant mice exposed to chronic unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

Background: We aimed to investigate the prognostic role of β-synuclein in comparison to that of neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) for predicting functional outcome after acute ischemic stroke (AIS).

Methods: We measured serum concentrations of β-synuclein, NfL and GFAP 24 h after hospital admission in 213 consecutive patients with moderate-to-severe AIS. We investigated the association between serum biomarkers and radiological/clinical characteristics, 3-months mortality and functional outcome on the modified Rankin Scale (mRS).

View Article and Find Full Text PDF

Introduction: We investigated whether the cerebellum develops neuropathology that correlates with well-accepted Alzheimer's disease (AD) neuropathological markers and cognitive status.

Methods: We studied cerebellar cytoarchitecture in a cohort (N = 30) of brain donors. In a larger cohort (N = 605), we queried whether the weight of the contents of the posterior fossa (PF), which contains primarily cerebellum, correlated with dementia status.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!