A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanomechanical inhomogeneities in CVA-deposited titanium nitride thin films: Nanoindentation and finite element method investigations. | LitMetric

Nanomechanical inhomogeneities in CVA-deposited titanium nitride thin films: Nanoindentation and finite element method investigations.

Heliyon

Centre for Advanced Materials and Devices, School of Engineering and Technology, BML Munjal University, Sidhrawali, Gurugram, 122413, Haryana, India.

Published: June 2024

Refractory metals that can withstand at high temperatures and harsh conditions are of utmost importance for solar-thermal and energy storage applications. Thin films of TiN have been deposited using cathodic vacuum arc deposition at relatively low temperatures ∼300 °C using the substrate bias ∼ -60 V. The nanomechanical properties of these films were investigated using nanoindentation and the spatial fluctuations were observed. The nanoindentation results were simulated using finite element method through Johnson-Cook model. A parametric study was conducted, and 16 different models were simulated to predict the hardening modulus, hardening exponent, and yield stress of the deposited film. The predicted values of elastic modulus, yield stress, hardening modulus and hardening exponent as 246 GPa, 2500 MPa, 25000 MPa and 0.1 respectively are found to satisfactorily explain the experimental load-indentation curves. We have found the local nitridation plays an important role on nanomechanical properties of TiN thin films and confirms that the nitrogen deficient regions are ductile with low yield stress and hardening modulus. This study further opens the opportunities of modelling the nanoscale system using FEM analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252795PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e33239DOI Listing

Publication Analysis

Top Keywords

thin films
12
hardening modulus
12
yield stress
12
finite element
8
element method
8
nanomechanical properties
8
modulus hardening
8
hardening exponent
8
stress hardening
8
hardening
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!