Urban environments, characterized by high population density and intricate infrastructures, are susceptible to a range of emergencies such as fires and traffic accidents. Optimal placement and distribution of fire stations and ambulance centers are thus imperative for safeguarding both life and property. An investigation into the distribution inefficiencies of emergency service facilities in selected districts of Chengdu reveals that imbalanced distribution of these facilities results in suboptimal response times during critical incidents. To address this challenge, a two-stage clustering method, incorporating X-means and K-means algorithms, is employed to identify optimal number and locations for Unmanned Aerial Vehicle (UAV) fire stations and drone ambulance centers. A Mixed-Integer Linear Programming (MILP) model is subsequently constructed and solved using the Gurobi optimization platform. Bayesian optimization-a machine learning technique-is exploited to elucidate the interplay between response speed and service capacity of these UAV-based emergency service stations under an optimized layout. Results affirm that integration of MILP and machine learning provides a robust framework for solving complex problems related to the siting and allocation of emergency service facilities. The proposed hybrid algorithm demonstrates substantial potential for enhancing emergency preparedness and response in urban settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252858 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e32928 | DOI Listing |
Diagn Progn Res
January 2025
Department of Applied Health Sciences, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, UK.
Background: Pressure injuries (PIs) place a substantial burden on healthcare systems worldwide. Risk stratification of those who are at risk of developing PIs allows preventive interventions to be focused on patients who are at the highest risk. The considerable number of risk assessment scales and prediction models available underscores the need for a thorough evaluation of their development, validation, and clinical utility.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Department of Computer Engineering, Chungbuk National University, Chungdae-ro 1, Cheongju, 28644, Republic of Korea.
Background: Drug response prediction can infer the relationship between an individual's genetic profile and a drug, which can be used to determine the choice of treatment for an individual patient. Prediction of drug response is recently being performed using machine learning technology. However, high-throughput sequencing data produces thousands of features per patient.
View Article and Find Full Text PDFInt J Retina Vitreous
January 2025
Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, 560010, India.
Purpose: To evaluate the predictive accuracy of various machine learning (ML) statistical models in forecasting postoperative visual acuity (VA) outcomes following macular hole (MH) surgery using preoperative optical coherence tomography (OCT) parameters.
Methods: This retrospective study included 158 eyes (151 patients) with full-thickness MHs treated between 2017 and 2023 by the same surgeon and using the same intraoperative surgical technique. Data from electronic medical records and OCT scans were extracted, with OCT-derived qualitative and quantitative MH characteristics recorded.
BMC Med Inform Decis Mak
January 2025
Department of Nursing, The Affiliated Hospital of Medical College Qingdao University, Qingdao, Shandong, 266003, China.
Background: This systematic review aims to explore the early predictive value of machine learning (ML) models for the progression of gestational diabetes mellitus (GDM) to type 2 diabetes mellitus (T2DM).
Methods: A comprehensive and systematic search was conducted in Pubmed, Cochrane, Embase, and Web of Science up to July 02, 2024. The quality of the studies included was assessed.
BMC Res Notes
January 2025
UQ Centre for Clinical Research, Faculty of Health Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia.
Objectives: This data note presents a comprehensive geodatabase of cardiovascular disease (CVD) hospitalizations in Mashhad, Iran, alongside key environmental factors such as air pollutants, built environment indicators, green spaces, and urban density. Using a spatiotemporal dataset of over 52,000 hospitalized CVD patients collected over five years, the study supports approaches like advanced spatiotemporal modeling, artificial intelligence, and machine learning to predict high-risk CVD areas and guide public health interventions.
Data Description: This dataset includes detailed epidemiologic and geospatial information on CVD hospitalizations in Mashhad, Iran, from January 1, 2016, to December 31, 2020.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!