In-vitro studies are widely used in nutrition research. Two major challenges using in-vitro models in animal nutrition research are the individual adaptation of in-vitro digestion models to varying physiological conditions and small digesta output limiting sample material for further analysis. Since several years, the use of zinc in animal production has been legally reduced to control zinc emissions. Earlier, zinc doses around 3000 mg/kg diet were used to prevent post-weaning diarrhea and promote growth in weaning piglets. The first aim of this study was to adapt an in-vitro digestion system for piglets with increased sample output. The second aim was to study the effect of a titanium-bound zinc source at legal dietary inclusion levels on nutrient degradation in an in-vitro digestion model. The experiment was conducted in a 2x2 factorial design incubating 2 different feeds (1. control feed: a commercial piglet diet containing 75 mg zinc per kg diet and 2. treatment feed: control feed with 50 mg of a titanium-bound zinc oxide) in in-situ digestion bags in the Ankom Daisy® incubator with or without digestive enzymes (pepsin, pancreatic enzymes and bile salts). Residuals of incubated feed were analyzed for crude ash, crude protein and starch. The addition of pepsin, pancreatic enzymes and bile salts significantly increased organic matter, crude protein and starch degradation from the digested feed, therefore making the distinction of nutrient disappearance due to enzyme activity versus due to dissolution possible. In conclusion we established an in-vitro digestion model to evaluate the effect of addition of a new zinc source on the enzymatic digestion in piglets. However, addition of the new zinc source did not significantly improve nutrient degradation in the in-vitro digestion model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252939 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e33300 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!