A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring optical solitary wave solutions in the (2+1)-dimensional equation with in-depth of dynamical assessment. | LitMetric

The current study explores the (2+1)-dimensional Chaffee-Infante equation, which holds significant importance in theoretical physics renowned reaction-diffusion equation with widespread applications across multiple disciplines, for example, ion-acoustic waves in optical fibres, fluid dynamics, electromagnetic wave fields, high-energy physics, coastal engineering, fluid mechanics, plasma physics, and various other fields. Furthermore, the Chaffee-Infante equation serves as a model that elucidates the physical processes of mass transport and particle diffusion. We employ an innovative new extended direct algebraic method to enhance the accuracy of the derived exact travelling wave solutions. The obtained soliton solutions span a wide range of travelling waves like bright-bell shape, combined bright-dark, multiple bright-dark, bright, flat-kink, periodic, and singular. These solutions offer valuable insights into wave behaviour in nonlinear media and find applications in diverse fields such as optical fibres, fluid dynamics, electromagnetic wave fields, high-energy physics, coastal engineering, fluid mechanics, and plasma physics. Soliton solutions are visually present by manipulating parameters using Wolfram Mathematica software, graphical representations allow us to study solitary waves as parameters change. Observing the dynamics of the model, this study presents sensitivity in a nonlinear dynamical system. The applied mathematical approaches demonstrate its ability to identify reliable and efficient travelling wave solitary solutions for various nonlinear evolution equations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252713PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e32826DOI Listing

Publication Analysis

Top Keywords

wave solutions
8
chaffee-infante equation
8
optical fibres
8
fibres fluid
8
fluid dynamics
8
dynamics electromagnetic
8
electromagnetic wave
8
wave fields
8
fields high-energy
8
high-energy physics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!