Aim: This study aims to investigate the influence of (ADP ribosylation factor guanylate kinase 1) on the malignant behavior of gastric cancer (GC) cells and to elucidate the potential molecular mechanisms involved in cancer development and progression.

Methods: We assessed the impact of overexpression and knockdown on GC cell malignancy using CCK8, colony formation, flow cytometry (Annexin V/propidium iodide), Transwell migration, invasion, and scratch assays. Western blot analysis was used to assess the effects of on angiogenesis, matrix metalloproteinases (MMPs), apoptotic proteins, epithelial-mesenchymal transition (EMT)-related proteins, as well as AKT and -AKT. The influence of knockdown was also evaluated in nude mice bearing BGC823 cell-derived tumors.

Results: Our findings revealed that was significantly overexpressed in GC cells, enhancing their proliferation, invasion, and migration, while reducing apoptosis. Conversely, knockdown reversed these effects, markedly increasing the expression of cleaved-caspase 3 (Casp3), PARP, and the epithelial marker E-cadherin, and significantly decreasing MMP2, MMP9, VEGFA, and mesenchymal markers such as N-cadherin and vimentin. Additionally, it reduced AKT, and -AKT levels ( < 0.01). Tumor growth in nude mice was suppressed following knockdown.

Conclusion: The overexpression of significantly promotes malignant behaviors in GC cells, whereas its knockdown diminishes these effects. This modulation is potentially through the downregulation of VEGFA, leading to reduced angiogenesis, Cleaved-Casp3 and Cleaved-PARP overexpression, and a decrease in MMPs, EMT, AKT, and -AKT activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253526PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e33255DOI Listing

Publication Analysis

Top Keywords

adp ribosylation
8
ribosylation factor
8
factor guanylate
8
guanylate kinase
8
kinase malignant
8
behavior gastric
8
gastric cancer
8
akt -akt
8
role adp
4
malignant biological
4

Similar Publications

Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).

Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.

View Article and Find Full Text PDF

Background: Signaling pathways centered on the G-protein ADP-ribosylation factor 6 (Arf6) and its downstream effector ArfGAP with the SH3 Domain, Ankyrin Repeat and PH Domain 1 (AMAP1) drive cancer invasion, metastasis, and therapy resistance. The Arf6-AMAP1 pathway has been reported to promote receptor recycling leading to programmed cell death-ligand 1 (PD-L1) overexpression in pancreatic ductal carcinoma. Moreover, AMAP1 regulates of nuclear factor-kappa B (NF-κB), which is an important molecule in inflammation and immune activation, including tumor immune interaction through PD-L1 regulation.

View Article and Find Full Text PDF

Induction of IMPDH-Based Cytoophidia by a Probable IMP-Dependent ARL13B-IMPDH Interaction.

Biochemistry (Mosc)

December 2024

Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran.

Inosine Monophosphate Dehydrogenase (IMPDH) catalyzes rate-limiting step of the reaction converting inosine monophosphate (IMP) to guanine nucleotides. IMPDH is up-regulated in the healthy proliferating cells and also in tumor cells to meet their elevated demand for guanine nucleotides. An exclusive regulatory mechanism for this enzyme is filamentation, through which IMPDH can resist allosteric inhibition by the end product, GTP.

View Article and Find Full Text PDF

Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in cells were optimized and procedure for protein purification was developed.

View Article and Find Full Text PDF

The curious case of mitochondrial sirtuin in rewiring breast cancer metabolism: Mr Hyde or Dr Jekyll?

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India. Electronic address:

Mammalian sirtuins are class III histone deacetylases involved in the regulation of multiple biological processes including senescence, DNA repair, apoptosis, proliferation, caloric restriction, and metabolism. Among the mammalian sirtuins, SIRT3, SIRT4, and SIRT5 are localized in the mitochondria and collectively termed the mitochondrial sirtuins. Mitochondrial sirtuins are NAD+-dependent deacetylases that play a central role in cellular metabolism and function as epigenetic regulators by performing post-translational modification of cellular proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!