Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, with the remarkable development of deep learning technology, achievements are being updated in various computer vision fields. In particular, the object recognition field is receiving the most attention. Nevertheless, recognition performance for small objects is still challenging. Its performance is of utmost importance in realistic applications such as searching for missing persons through aerial photography. The core structure of the object recognition neural network is the feature pyramid network (FPN). You Only Look Once (YOLO) is the most widely used representative model following this structure. In this study, we proposed an attention-based scale sequence network (ASSN) that improves the scale sequence feature pyramid network (ssFPN), enhancing the performance of the FPN-based detector for small objects. ASSN is a lightweight attention module optimized for FPN-based detectors and has the versatility to be applied to any model with a corresponding structure. The proposed ASSN demonstrated performance improvements compared to the baselines (YOLOv7 and YOLOv8) in average precision () of up to 0.6%. Additionally, the AP for small objects ( ) showed also improvements of up to 1.9%. Furthermore, ASSN exhibits higher performance than ssFPN while achieving lightweightness and optimization, thereby improving computational complexity and processing speed. ASSN is open-source based on YOLO version 7 and 8. This can be found in our public repository: https://github.com/smu-ivpl/ASSN.git.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253262 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e32931 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!