Robust leishmanicidal upshot of some new diphenyl triazine-based molecules.

RSC Adv

Department of Chemistry, Drug Design and Synthesis Lab., Jamia Millia Islamia Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655.

Published: July 2024

Amongst the neglected tropical diseases, leishmaniasis alone causes 30 000 deaths annually due to the protozoan parasite genus . Existing therapies have serious drawbacks in safety, drug resistance, field-adapted application and cost. Therefore, new safer and shorter treatments are an urgent need of the time. Herein, we report the synthesis of fifteen novel diphenyl triazine and diphenyl triazine pyrimidine derivatives and their antileishmanial properties against , that causes fatal visceral leishmaniasis. Most of the synthesized analogues exhibited more than 90% inhibition against the promastigote stage of the parasite. Moreover, compounds T4 and T7 showed potent activity against extracellular promastigote (IC = 1.074 μM and IC = 1.158 μM) as compared to miltefosine (IC = 1.477 μM) and is nontoxic towards the host THP-1 macrophage cell line. Interestingly, compound T4 exhibited significant activity against amastigotes (7.186 μM) and induced the macrophages to prevent the survival of the parasite. Our results indicate that T4 represents a new structural lead for this serious and neglected disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253633PMC
http://dx.doi.org/10.1039/d4ra01904kDOI Listing

Publication Analysis

Top Keywords

diphenyl triazine
8
robust leishmanicidal
4
leishmanicidal upshot
4
upshot diphenyl
4
diphenyl triazine-based
4
triazine-based molecules
4
molecules neglected
4
neglected tropical
4
tropical diseases
4
diseases leishmaniasis
4

Similar Publications

1,2,3-triazole-based ring connected with pyridazine, triazine, methyl pyrazole, diphenyl pyrazole, and pthalimide moieties through propylene linker have been synthesized for antidiabetic evaluation via click chemistry. The antidiabetic evaluations have been done by molecular docking studies and in- vitro tests and against the DPP-4 enzyme. The molecular docking studies have revealed that compounds 22, 23, 29, and 30 showed hydrogen bond with the DPP-4 enzyme while in vitro tests has revealed the compound 30 has (IC50 values 12.

View Article and Find Full Text PDF

Covalent triazine frameworks, with their ordered pores and crystalline structure that exhibit heteroatom impacts, demonstrate outstanding chemical stability, making them designable for charge storage applications. In this study, the TPT@BDA-COF was synthesized using 4',4''',4'''''-(1,3,5-Triazine-2,4,6-triyl)tris(([1,1'-biphenyl]-4-amine)) (TPT) and 4,4'-Oxydibenzaldehyde (BDA) following polycondensation process. Interestingly, these resulted in the fabrication of a well-connected, orderly porous crystalline structure, redox-active moiety, and high doping N (~13.

View Article and Find Full Text PDF

A facile, cost-effective, and sustainable synthesis of substituted triazines from primary alcohols by newly synthesized nickel pincer-type complexes (-) has been described. Herein, we report the synthesis of a set of three well-defined Ni(II) O^N^O pincer-type complexes, structurally characterized by analytical, spectral, and X-ray diffraction techniques. Further, the nickel complexes are explored as efficient catalysts (4 mol %) for the construction of 2,4,6-substituted 1,3,5-triazines from readily available alcohols via an acceptorless dehydrogenative coupling (ADC) strategy.

View Article and Find Full Text PDF

Diethyl 2-(((4-methyl-2-oxo-2H-chromen-7-yl)oxy)methylene)malonate was synthesized from coumarin 1 and diethyl ethoxymethylene malonate in ethanol, followed by cyclization in diphenyl ether to give chromene-9-carboxylate . Sugar hydrazones were formed by reacting hydrazide with D-galactose, D-mannose, and D-xylose, then acetylated to per--acetyl derivatives . Heating with acetic anhydride at 100 °C gave oxadiazolines .

View Article and Find Full Text PDF

Formation of positionally ordered but orientationally disordered molecular organization on surface.

J Phys Condens Matter

October 2024

CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

Positionally ordered but orientationally disordered molecular structures are commonly found in materials like liquid crystals and molecular glasses. Understanding these structures and their phase transitions helps in designing materials with a wide range of applications. Herein, we report the formation of positionally ordered but orientationally disordered structures via adsorption and organization of 2,4,6-tri([1,1'-biphenyl]-2-yl)-1,3,5-triazine (TBTA) molecules on different coin metal surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!