Objectives: In radiation therapy, the field-in-field (FIF) technique is used to prevent the administration of unnecessarily high doses to reduce toxicity. Recently, the FIF technique has been used for whole brain irradiation (WBI). Using the FIF technique, the volume that receives a higher than prescribed dose (hotspot) can be largely reduced; however, the treatment planning requires time. Therefore, to reduce the burden on the treatment planners, we propose a semiautomatic treatment planning method for the FIF technique.
Methods: In the semiautomatic FIF technique, hotspot regions in a treatment plan without the FIF technique are identified three-dimensionally, and beams with blocks that cover the hotspot regions using a multileaf collimator (sub-beams) are automatically created. The sub-beams are added to the original plan, and weights are assigned based on the maximum dose of the original plan to decrease the doses in the hotspot regions. This method was applied to 22 patients previously treated with WBI, wherein treatment plans were originally created without the FIF technique.
Results: In the semiautomatic FIF plans, the hotspots almost disappeared. The dose to 95% of the volume and the volume receiving at least 95% of the prescribed dose in the planning target volume decreased by only 0.3% ± 0.2% and 0.0% ± 0.1%, respectively, on average compared with those in the original plan. The average semiautomatic FIF processing time was 28 ± 4 s.
Conclusions: The proposed method reduced the hotspot regions with a slight change in the target coverage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250019 | PMC |
http://dx.doi.org/10.14789/jmj.JMJ22-0003-OA | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!