A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatial Organization of Lipid Nanoparticle siRNA Delivery Systems Revealed by an Integrated Magnetic Resonance Approach. | LitMetric

AI Article Synopsis

  • * The study introduces a new method using multinuclear solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy enhanced by dynamic nuclear polarization (DNP) to analyze the spatial arrangement of LNP components, specifically in siRNA-based drugs.
  • * Results reveal a structural model where siRNA resides in the core, targeting agents are positioned beneath the surface, and sugars are located above the lipid layer, highlighting the potential of this approach for broader applications in analyzing complex biological formulations.

Article Abstract

Lipid nanoparticles (LNPs) are increasingly finding applications in targeted drug delivery, including for subcutaneous, intravenous, inhalation, and vaccine administration. While a variety of microscopy techniques are widely used for LNP characterization, their resolution does not allow for characterization of the spatial organization of different components, such as the excipients, targeting agents, or even the active ingredient. Herein, an approach is presented to probe the spatial organization of individual constituent groups of LNPs used for siRNA-based drug delivery, currently in clinical trials, by multinuclear solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy. Dynamic nuclear polarization is exploited (DNP) for sensitivity enhancement, together with judicious H labeing, to detect functionally important LNP constituents, the siRNA and the targeting agent (<1-2 w/v%), respectively, and achieve a structural model of the LNP locating the siRNA in the core, the targeting agent below the surface, and the sugars above the lipid bilayer at the surface. The integrated approach presented here is applicable for structural analysis of LNPs and can be extended more generally to other multi-component biological formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202400622DOI Listing

Publication Analysis

Top Keywords

spatial organization
12
magnetic resonance
8
drug delivery
8
organization lipid
4
lipid nanoparticle
4
nanoparticle sirna
4
sirna delivery
4
delivery systems
4
systems revealed
4
revealed integrated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!