Background: Alterations in the PIK3/Akt/mTOR pathway are commonly seen in metastatic castration-sensitive prostate cancer (mCSPC), however their role in outcomes is unknown. We aim to evaluate the prognostic significance as well as the genetic landscape of PIK3/Akt/mTOR pathway alteration in mCSPC.
Methods: Fourhundred and seventy-two patients with mCSPC were included who underwent next generation sequencing. PIK3/Akt/mTor pathway alterations were defined as mutations in Akt1, mTOR, PIK3CA, PIK3CB, PIK3R1, PTEN, TSC1, and TSC2. Endpoints of interests were radiographic progression-free survival (rPFS), time to development of castration resistant prostate cancer (tdCRPC), and overall survival (OS). Kaplan-Meier analysis was performed and Cox regression hazard ratios (HR) were calculated.
Results: One hundred and fifty-two (31.9%) patients harbored a PIK3/Akt/mTOR pathway alteration. Median rPFS and tdCRPC were 23.7 and 21.0 months in PIK3/Akt/mTOR altered compared to 32.8 (p = 0.08) and 32.1 months (p = 0.002) in wildtype tumors. On multivariable analysis PIK3/Akt/mTOR pathway alterations were associated with tdCRPC (HR 1.43, 95% CI, 1.05-1.94, p = 0.02), but not rPFS [Hazard ratio (HR) 1.20, 95% confidence interval (CI), 0.90-1.60, p = 0.21]. PIK3/Akt/mTOR pathway alterations were more likely to be associated with concurrent mutations in TP53 (40% vs. 28%, p = 0.01) and TMPRSS2-ERG (37% vs. 26%, p = 0.02) than tumors without PIK3/Akt/mTOR pathway alterations. Concurrent mutations were typically associated with shorter median times to rPFS and tdCRPC. DAVID analysis showed p53 signaling and angiogenesis pathways were enriched in PIK3/Akt/mTOR pathway altered tumors while beta-catenin binding and altered BRCA pathway were enriched in PIK3/Akt/mTOR pathway wildtype tumors.
Conclusions: PIK3/Akt/mTOR pathway alterations were common in mCSPC and associated with poorer prognosis. The genetic landscape of PIK3/Akt/mTOR pathway altered tumors differed from wildtype tumors. Additional studies are needed to better understand and target the PIK3/Akt/mTOR pathway in mCSPC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pros.24765 | DOI Listing |
The truancy of representation of the estrogen, progesterone, and human epidermal growth factor receptors occurs during TNBC. TNBC is recognized for the upper reappearance and has a poorer diagnosis compared with rest breast cancer (BC) types. Presently, as such, no targeted therapy is approved for TNBC and treatment options are subjected to chemotherapy and surgery, which have high mortality rates.
View Article and Find Full Text PDFNutr Neurosci
July 2024
Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders with poor social interaction, communication issues, aberrant motor movements, and limited repetitive interests and behaviour. (SP) contains several multi-nutrients and has a wide range of neuroprotective properties. The target of the current experiment is to detect the protective effects of on valproic-induced autism in adult female albino rats' siblings for the first time.
View Article and Find Full Text PDFProstate
October 2024
Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA.
Background: Alterations in the PIK3/Akt/mTOR pathway are commonly seen in metastatic castration-sensitive prostate cancer (mCSPC), however their role in outcomes is unknown. We aim to evaluate the prognostic significance as well as the genetic landscape of PIK3/Akt/mTOR pathway alteration in mCSPC.
Methods: Fourhundred and seventy-two patients with mCSPC were included who underwent next generation sequencing.
PLoS One
May 2024
Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
Biomed Pharmacother
December 2023
Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland. Electronic address:
Breast cancer (BC) and prostate cancer (PC) are at the top of the list when it comes to the most common types of cancers worldwide. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is important, in that it strongly influences the development and progression of these tumors. Previous studies have emphasized the key role of inhibitors of the PIK3/AKT/mTOR signaling pathway in the treatment of BC and PC, and it remains to be a crucial method of treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!