A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Irreversibility of stochastic state transitions in Langevin systems with odd elasticity. | LitMetric

Irreversibility of stochastic state transitions in Langevin systems with odd elasticity.

Phys Rev E

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan.

Published: June 2024

Active microscopic objects, such as an enzyme molecule, are modeled by the Langevin system with the odd elasticity, in which energy injection from the substrate to the enzyme is described by the antisymmetric part of the elastic matrix. By applying the Onsager-Machlup integral and large deviation theory to the Langevin system with odd elasticity, we can calculate the cumulant generating function of the irreversibility of the state transition. For an N-component system, we obtain a formal expression of the cumulant generating function and demonstrate that the oddness λ, which quantifies the antisymmetric part of the elastic matrix, leads to higher-order cumulants that do not appear in a passive elastic system. To demonstrate the effect of the oddness under the concrete parameter, we analyze the simplest two-component system and obtain the optimal transition path and cumulant generating function. The cumulants obtained from expansion of the cumulant generating function increase monotonically with the oddness. This implies that the oddness causes the uncertainty of stochastic state transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.109.064116DOI Listing

Publication Analysis

Top Keywords

cumulant generating
16
generating function
16
odd elasticity
12
stochastic state
8
state transitions
8
langevin system
8
system odd
8
antisymmetric elastic
8
elastic matrix
8
demonstrate oddness
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!