Polymer physics models suggest that chromatin spontaneously folds into loop networks with transcription units (TUs), such as enhancers and promoters, as anchors. Here we use combinatoric arguments to enumerate the emergent chromatin loop networks, both in the case where TUs are labeled and where they are unlabeled. We then combine these mathematical results with those of computer simulations aimed at finding the inter-TU energy required to form a target loop network. We show that different topologies are vastly different in terms of both their combinatorial weight and energy of formation. We explain the latter result qualitatively by computing the topological weight of a given network-i.e., its partition function in statistical mechanics language-in the approximation where excluded volume interactions are neglected. Our results show that networks featuring local loops are statistically more likely with respect to networks including more nonlocal contacts. We suggest our classification of loop networks, together with our estimate of the combinatorial and topological weight of each network, will be relevant to catalog three-dimensional structures of chromatin fibers around eukaryotic genes, and to estimate their relative frequency in both simulations and experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.109.064405 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Engineering, College of Engineering, King Khalid University, P.O. Box 394, 61421, Abha, KSA, Saudi Arabia.
The direct power control (DPC) algorithm is one of the most popular linear techniques used to implement notable controllers, known for their simplicity and fast dynamic response. However, this approach has drawbacks that cause a decrease in the current quality and disturbances in the network. Therefore, this experimental work presents a simple and efficient solution that uses a proportional-integral regulator based on a genetic algorithm to regulate the power quality.
View Article and Find Full Text PDFISA Trans
December 2024
College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
This paper proposes an improved remaining useful life (RUL) prediction method for stochastic degradation devices monitored by multi-source sensors under data-model interactive framework. Firstly, the interrelationships among sensors are established using k-nearest neighbor (KNN), and the composite health index (CHI) is constructed by aggregating the multi-source sensor information through the graph convolutional network (GCN). Secondly, a stochastic degradation model with triple uncertainty at any initial degradation level is established to improve the matching degree between the stochastic degradation model and the actual degradation process.
View Article and Find Full Text PDFJ Acad Nutr Diet
January 2025
Associate Professor, George Washington University Milken Institute School of Public Health, Washington, D.C.. Electronic address:
Background: Though the Dietary Guidelines for Americans recommend that individuals drink water instead of sugar-sweetened beverages (SSBs), this behavior is influenced and reinforced by a complex network of structures and systems.
Objective: The objectives of this study were to develop a shared understanding among multiple stakeholders about the structural and underlying, interconnected drivers of SSB and water consumption in the Washington D.C.
ASAIO J
January 2025
From the Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio.
Right ventricular injury (RVI) in respiratory failure receiving veno-venous extracorporeal membrane oxygenation (VV ECMO) is associated with significant mortality. A scoping review is necessary to map the current literature and guide future research regarding the definition and management of RVI in patients receiving VV ECMO. We searched for relevant publications on RVI in patients receiving VV ECMO in Medline, EMBASE, and Web of Science.
View Article and Find Full Text PDFPhysiol Plant
January 2025
National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India.
Plants defend against chewing herbivores by up-regulating jasmonic acid (JA) signaling, which activates downstream signaling cascades and produces numerous secondary metabolites that act as defense molecules against the herbivores. Although secondary metabolism always remains a focus of research, primary metabolism is also reported to be realigned upon herbivory. However, JA signaling-mediated modulation of primary metabolites and their metabolic pathways in plants are mostly unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!