AI Article Synopsis

  • The study investigates the microbial contamination of industrial hemp, highlighting risks of pathogens like E. coli and Salmonella, particularly in plants grown outdoors.
  • Seven Italian hemp genotypes were analyzed over three years in different locations, revealing that most samples failed to meet European microbiological safety standards.
  • Findings suggest a negative correlation between CBD levels and microbial contamination, indicating that higher CBD concentrations may offer some protection against harmful microbes.

Article Abstract

Background: The use of industrial Cannabis sativa L. for recreational, cosmeceutical, nutraceutical, and medicinal purposes has gained momentum due to its rich content of valuable phytochemicals, such as cannabidiol (CBD) and cannabigerol (CBG). However, there are concerns regarding the risk of microbial contamination in plants grown outside controlled environments. Microbes associated with hemp can be either epiphytes or endophytes and may pose a risk of infectious illness for humans.

Methods: Seven Italian hemp genotypes, including Bernabeo, Carmagnola, Carmaleonte, Codimono, CS, Eletta Campana, and Fibranova, were cultivated in two distinct geographic locations, Catania and Rovigo, for three consecutive years from 2019 to 2021. Total aerobic microbes (TAMC), total combined yeasts/moulds (TYMC), the presence of bile-tolerant Gram-negative bacteria, and the absence of Escherichia coli and Salmonella spp. were evaluated and compared. The main phytocannabinoid content was measured and correlated with microbial contamination.

Results: Most samples analyzed in this study did not meet the European Pharmacopoeia microbiological limits. The detection of potential pathogens, such as E. coli and Salmonella spp., in the samples indicates that the use of inflorescences may represent a possible source of infection. Microbial contamination varied among harvesting seasons and production sites, with agroclimatic conditions influencing microbial load and composition. The presence of potentially pathogenic bacteria was less associated with seasonal climate variability and more likely affected by sporadic contamination from external sources. CBD concentration exhibited a negative correlation with bile-tolerant Gram-negative bacteria and total yeasts/moulds levels. Samples with lower CBD content were more contaminated than those with higher CBD levels, suggesting a potential protective effect of this phytochemical on the plant.

Conclusions: The threshing residues (inflorescences, floral bracts, and leaves) of industrial hemp varieties represent a valuable product and a source of beneficial phytochemicals that warrants further exploration. While post-harvest sterilization methods may reduce microbiological risks, they may also degrade heat- and light-sensitive bioactive phytochemicals. The most promising strategy involves implementing best agronomic practices to maintain healthy and uncontaminated cultures. Rigorous monitoring and quality certification protocols are essential to mitigate the microbiological risk associated with the consumption of hemp-derived products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253326PMC
http://dx.doi.org/10.1186/s42238-024-00241-zDOI Listing

Publication Analysis

Top Keywords

industrial hemp
8
microbial contamination
8
bile-tolerant gram-negative
8
gram-negative bacteria
8
coli salmonella
8
salmonella spp
8
microbial
5
three-years survey
4
survey microbial
4
microbial contaminants
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!