[2-14C]-RSU-1069 [1-(2-nitro-1-imidazolyl)-3-(1-aziridino)-2-propanol], either as a parent (unreduced) or following radiation reduction, binds to calf thymus DNA in vitro. Radiation-reduced RSU-1069 binds to a greater extent and more rapidly than the parent compound. RSU-1137, a nonaziridino analogue of RSU-1069, binds following radiation reduction. Radiation-reduced misonidazole (1-(2-nitro-1-imidazolyl)-3-methoxy-2-propanol) exhibits binding ratios a thousand-fold less than those of reduced RSU-1069. There is no evidence for binding of parent misonidazole. Both parent and reduced RSU-1069 cause single strand breaks (ssbs) in pSV2 gpt plasmid DNA with the reduced compound causing a greater number of breaks. Parent and reduced RSU-1137 and misonidazole do not cause ssbs. It is inferred that the aziridine moiety present in both parent and reduced RSU-1069 is required for ssb production. RSU-1069 reacts with inorganic phosphate probably via nucleophilic ring-opening of the aziridine fragment. Incubation of plasmid DNA with reduced RSU-1069 in the presence of either phosphate or deoxyribose-5-phosphate at concentrations greater than 0.35 mol dm-3 prevents strand breakage, whereas 1.2 mol dm-3 deoxyribose does not protect against strand breakage formation. From these findings it is proposed that the observed binding to DNA occurs via the aziridine and the reduced nitro group of RSU-1069 and that these two have different target sites. Binding to DNA via the reduced nitro group may serve to increase aziridine attack due to localization at or near its target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-2952(85)90730-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!