Design and application of coal gangue sorting system based on deep learning.

Sci Rep

Shandong Provincial Key Laboratory of Robotics and Intelligent Technology, Shandong University of Science and Technology, Qianwangang Road 579, Qingdao, 266590, Shandong, China.

Published: July 2024

With the advancement of science and technology, coal-washing plants are transitioning to intelligent, information-based, and professional sorting systems. This shift accelerates the construction a modern economic system characterized by green and low-carbon development, thereby promoting the high-quality advancement of the coal industry. Traditional manual gangue picking and multi-axis robotic arm gangue selection currently suffer from low recognition accuracy, slow sorting efficiency, and high worker labor intensity. This paper proposes a deep learning-based, non-contact gangue recognition and pneumatic intelligent sorting system. The system constructs a dynamic database containing key feature information such as the target gangue's contour, quality, and center of mass. The system elucidates the relationships between ejection speed, mass, volume, angle of incidence, and the impact energy matching mechanism. Demonstration experiments using the system prototype for coal gangue sorting reveal that, compared to existing robotic arm sorting methods in coal washing plants, this system achieves a gangue identification accuracy exceeding 97%, a sorting rate above 91%, and a separation time of less than 3 s from identification to separation, thereby effectively enhancing raw coal purity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255330PMC
http://dx.doi.org/10.1038/s41598-024-67323-zDOI Listing

Publication Analysis

Top Keywords

coal gangue
8
gangue sorting
8
sorting system
8
robotic arm
8
sorting
7
system
7
gangue
6
coal
5
design application
4
application coal
4

Similar Publications

The synergistic utilization of multiple solid waste is an effective means of achieving green filling and resource utilization of solid waste in mines. In this paper, the synergistic effects of solid waste granulated blast furnace slag (GS) and carbide slag (CS) as cementitious materials (GCCM) are investigated, along with their preliminary feasibility in combination with coal gangue (CG) and furnace bottom slag (FBS) for the preparation of backfill materials. The synergistic hydration mechanism, mechanical properties, working performance of GCCM and GBC were studied, and the environmental impact and cost-effectiveness of GBC were evaluated.

View Article and Find Full Text PDF

A constitutive model for coal gangue coarse-grained subgrade filler incorporating particle breakage.

Sci Rep

January 2025

Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China.

The accumulation and discharge amount of coal gangue are substantial, occupying significant land resources over time. Utilizing coal gangue as subgrade filler can generate notable economic and social benefits. Coal gangue coarse-grained soil (CGSF) was used to conduct a series of large-scale vibration compaction tests and large-scale triaxial tests.

View Article and Find Full Text PDF

Review on Gallium in Coal and Coal Waste Materials: Exploring Strategies for Hydrometallurgical Metal Recovery.

Molecules

December 2024

Faculty of Non-Ferrous Metals, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.

Gallium, a critical and strategic material for advanced technologies, is anomalously enriched in certain coal deposits and coal by-products. Recovering gallium from solid residues generated during coal production and utilization can yield economic benefits and positive environmental gains through more efficient waste processing. This systematic literature review focuses on gallium concentrations in coal and its combustion or gasification by-products, modes of occurrence, gallium-hosting phases, and hydrometallurgical recovery methods, including pretreatment procedures that facilitate metal release from inert aluminosilicate minerals.

View Article and Find Full Text PDF

In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.

View Article and Find Full Text PDF

Alkaline fusion is a pivotal process influencing the cost of synthesizing zeolite from coal gangue. This study examined the effects of alkaline fusion temperature ( ), treatment duration ( ) and the NaOH/coal gangue weight ratio ( ) on the composition and properties of the products, as well as their adsorption capacities for Cd ( ) and Pb ( ). Response surface methodology (RSM) was employed to analyze the interactions among these factors, and the adsorption mechanisms for Cd and Pb were investigated using X-ray diffraction, scanning electron microscopy-EDS, Fourier transform infrared, X-ray photoelectron spectroscopy, and N adsorption-desorption techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!