The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ωB97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254924PMC
http://dx.doi.org/10.1038/s41467-024-50407-9DOI Listing

Publication Analysis

Top Keywords

learning reactive
4
reactive potential
4
potential silica-water
4
silica-water uncertainty
4
uncertainty attribution
4
attribution reactivity
4
reactivity silicates
4
silicates aqueous
4
aqueous solution
4
solution relevant
4

Similar Publications

Purpose: Establishing an accurate prognosis remains challenging in older patients with cancer because of the population's heterogeneity and the current predictive models' reduced ability to capture the complex interactions between oncologic and geriatric predictors. We aim to develop and externally validate a new predictive score (the Geriatric Cancer Scoring System [GCSS]) to refine individualized prognosis for older patients with cancer during the first year after a geriatric assessment (GA).

Materials And Methods: Data were collected from two French prospective multicenter cohorts of patients with cancer 70 years and older, referred for GA: ELCAPA (training set January 2007-March 2016) and ONCODAGE (validation set August 2008-March 2010).

View Article and Find Full Text PDF

Background: Stress is a significant risk factor for psychiatric disorders such as major depressive disorder (MDD) and panic disorder (PD). This highlights the need for advanced stress-monitoring technologies to improve treatment. Stress affects the autonomic nervous system, which can be evaluated via heart rate variability (HRV).

View Article and Find Full Text PDF

Background: Osteoarthritis (OA), characterized by progressive degeneration of cartilage and reactive proliferation of subchondral bone, stands as a prevalent condition in orthopedic clinics. However, the precise mechanisms underlying OA pathogenesis remain inadequately explored.

Methods: In this study, Random Forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) machine learning techniques were employed to identify hub genes.

View Article and Find Full Text PDF

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to persist, demonstrating the risks posed by emerging infectious diseases to national security, public health, and the economy. Development of new vaccines and antibodies for emerging viral threats requires substantial resources and time, and traditional development platforms for vaccines and antibodies are often too slow to combat continuously evolving immunological escape variants, reducing their efficacy over time. Previously, we designed a next-generation synthetic humanized nanobody (Nb) phage display library and demonstrated that this library could be used to rapidly identify highly specific and potent neutralizing heavy chain-only antibodies (HCAbs) with prophylactic and therapeutic efficacy in vivo against the original SARS-CoV-2.

View Article and Find Full Text PDF

Recreational older ballet dancers adapt faster to repeated standing-slips than older non-dancers.

Complement Ther Clin Pract

January 2025

Department of Kinesiology and Health, Georgia State University, Atlanta, GA, 30303, USA. Electronic address:

Background: Falls are a global health concern facing older adults. Ballet emphasizes postural control, coordination, and leg muscle strength. Previous work indicated young professional ballet dancers adapt more effectively to repeated standing-slips than non-dancers as evidenced by better reactive improvements in dynamic gait stability and step latency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!