Holmium (Ho)-doped boro-bismuth-germanate glasses having the chemical composition (30-x)BO + 20GeO + 20BiO + 20NaO + 10YO + xHoO, where x = 0.1, 0.5, 1.0, and 2.0 mol% were prepared by melt-quenching technique. The prepared glasses were examined for thermal, optical, vibrational, and photoluminescent properties. The prepared glasses were found to be thermally very stable. The optical bandgap and Urbach energies of 0.1 mol% HoO-doped boro-bismuth-germanate glass were calculated to be 3.3 eV and 377 MeV, respectively, using the absorption spectrum. The Judd-Ofelt analysis was performed on the 0.1 mol% HoO-doped glass and compared the obtained parameters with literature. The branching ratio (β) and emission cross-section (σ) of the green band were determined to be 0.7 and 0.24 × 10 cm, respectively. Under 450 nm excitation, a strong green emission around 550 nm was observed and assigned to the (S + F) → I (Ho) transition. Upon an increase of HoO content from 0.1 to 2.0 mol%, the intensities of all observed emission bands as well as decay time of the (S + F) → I transition have been decreased gradually. The reasons behind the decrease in emission intensity and decay time were discussed. The strong green emission suggests that these glasses may be a better option for display devices and green emission applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bio.4822 | DOI Listing |
Bioresour Technol
January 2025
Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Mature compost can reduce gaseous emissions in composting, but its regulation mechanisms via biotic and abiotic functions are largely unknown. This study used fresh and inactivated mature compost as additives in kitchen waste composting to unveil the relevant mechanisms using metagenomic analysis. Results showed that mature compost reduce gaseous emission by improving physiochemical properties and inoculating functional microbes.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil. Electronic address:
The NorA and TetK efflux pumps mediate resistance to fluoroquinolone and tetracycline antibiotics by actively extruding these compounds and reducing their intracellular concentrations. Consequently, intense research has focused on inhibiting these efflux mechanisms using antimicrobial agents derived from natural or synthetic sources. This study used Fourier transform infrared spectroscopy (ATR-FTIR) to analyze the various functional groups present in p-coumaric acid.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
Mn-doped luminescent materials play a significant role in a variety of fields, including modern lighting, displays, and imaging. Mn exhibits a broad and adjustable emission, hinging on the local environment of the crystal field and the interaction of the 3d electrons. However, it is still a challenge to realize the precise control of the emission of Mn ions due to site-prior occupation in a specific lattice.
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
The increasingly accumulated end-of-life batteries require high-efficiency regeneration technology for sustainable development. However, the existing recycling methods are highly restricted in a direct additive process due to the inconsistent content of alkaline ions within various spent materials and then failure to recover them together. Here, a subtractive process is introduced for the integrated regeneration of spent cathode materials, which successfully transforms the cathode materials with an unknown Na content to the desodiation phase together via water only.
View Article and Find Full Text PDFAdv Mater
January 2025
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Herein, a parallel "bifunctional group" modulation method is proposed to achieve controlled modulation of the emission wavelength and full-width at half-maximum (FWHM) values. As a result, three proof-of-concept emitters, namely DBNDS-TPh, DBNDS-DFPh, and DBNDS-CNPh, are designed and synthesized, with the first functional dibenzo[b,d]thiophene unit concurrently reducing the bandgap and elevate their triplet state energy. A second functional group 1,1':3',1″-triphenyl, and electron acceptors 1,3-difluorobenzene and benzonitrile, respectively, to deepen the HOMO and LUMO levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!