Objectives: Type H blood vessels are a subtype of bone-specific microvessels (CD31Emcn) that play an important regulatory role in the coupling of angiogenesis and osteogenesis. Despite reports on the distinct roles of type H and L vessels under physiological and pathological bone conditions, their genetic differences remain to be elucidated. This study aims to construct a competitive endogenous RNA (ceRNA) network of key gene for differencial expression (DE) in type H and L vascular endothelial cells (ECs) through integrated bioinformatic methods.

Methods: We downloaded relevant raw data from the ArrayExpress and the Gene Expression Omnibus (GEO) database and used the Limma R-Bioconductor package to screen for DE lncRNAs, DE miRNAs, and DE mRNAs between type H and L vascular ECs. A total ceRNA network was constructed based on their interactions, followed by refinement using protein-protein interaction (PPI) networks to select upregulated and downregulated key genes. Enrichment analysis was performed on these key genes. Random validation was conducted using flow cytometry and real-time RT-PCR.

Results: A total of 1 761 DE mRNAs, 187 DE lncRNAs, and 159 DE miRNAs were identified, and a comprehensive ceRNA network was constructed based on their interactions. Six upregulated (, , , , , and ) and 2 downregulated ( and ) key genes were selected via PPI network to construct a subnetwork of ceRNAs related to these key genes. Upregulated key genes were mainly enriched in negative regulation of angiogenesis and vascular apoptosis. Results from flow cytometry and real-time RT-PCR were consistent with bioinformatics analysis.

Conclusions: This study proposes a ceRNA network associated with upregulated and downregulated type H and L vascular ECs based on selected key genes, providing new insights into the regulatory mechanisms of type H and L vascular ECs in bone metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255190PMC
http://dx.doi.org/10.11817/j.issn.1672-7347.2024.230343DOI Listing

Publication Analysis

Top Keywords

key genes
24
type vascular
20
cerna network
16
vascular ecs
12
upregulated downregulated
12
vascular endothelial
8
endothelial cells
8
network constructed
8
constructed based
8
based interactions
8

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!