Methylglyoxal-derived hydroimidazolone-1/RAGE axis induces renal oxidative stress and renal fibrosis in vitro and in vivo.

Toxicology

Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea. Electronic address:

Published: September 2024

Advanced glycation end products (AGEs) are important contributors to the progression of chronic kidney diseases (CKD), including renal fibrosis. Although the relationship between AGEs and renal fibrosis has been well studied, the mechanisms of individual AGE-induced renal injury remain poorly understood. This study investigated the adverse effect of methylglyoxal-derived hydroimidazolone-1 (MG-H1), a methylglyoxal (MG)-derived AGE generated by the glycation of MG and arginine residues, on kidney damage. We aimed to elucidate the molecular mechanisms of MG-H1-mediated renal injury and fibrosis, focusing on the receptor for AGEs (RAGE) signaling and its effects on the Wnt/β-catenin pathway, MAPK pathway, and inflammatory responses. Our results suggest that the MG-H1/RAGE axis plays a significant role in the pathogenesis of CKD and its downstream events involving MAPK kinase-related factors and inflammatory factors. MG-H1 treatment modulated the expression of inflammatory cytokines (TNF-α, IL-6, and IL-1β) and MAPK proteins (ERK1/2, JNK, and p38).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2024.153887DOI Listing

Publication Analysis

Top Keywords

renal fibrosis
12
renal injury
8
renal
6
methylglyoxal-derived hydroimidazolone-1/rage
4
hydroimidazolone-1/rage axis
4
axis induces
4
induces renal
4
renal oxidative
4
oxidative stress
4
stress renal
4

Similar Publications

Intestinal microbiota are pathophysiologically involved in diabetic nephropathy (DN). Dapagliflozin, recognized for its blood glucose-lowering effect, has demonstrated efficacy in improving DN. However, the mechanisms beyond glycemic control that mediate the impact of dapagliflozin on DN remain unclear.

View Article and Find Full Text PDF

Podocyte injury and proteinuria in glomerular disease are critical indicators of acute kidney injury progression to chronic kidney disease. Renal mitochondrial dysfunction, mediated by intracellular calcium levels and oxidative stress, is a major contributor to podocyte complications. Despite various strategies targeting mitochondria to improve kidney function, effective treatments remain lacking.

View Article and Find Full Text PDF

Chronic kidney disease is defined as a progressive loss of kidney function associated with impaired recovery after acute kidney injury. Renal ischemia-reperfusion (IR) induces oxidative stress and inflammatory responses leading to severe tissue damage, where incomplete or maladaptive repair accelerates renal fibrosis and aging. To investigate the role of the purinergic P2Y2 receptor (P2Y2R) in these processes, we used P2Y2R knockout (KO) mice subjected to IR.

View Article and Find Full Text PDF

Klotho has been importantly linked to atherosclerosis, but little is known about its specific role. This study investigates the mechanism by which Klotho enhances the stability of atherosclerotic plaques in chronic kidney disease. apoE-/- knockout mice and C57BL/6 mice underwent 5/6 nephrectomy and then klotho-NC and klotho-mimic groups were set up to be fed a high-fat chow diet and a dummy group was created to be fed a normal chow diet.

View Article and Find Full Text PDF

N6-methyladenosine regulates metabolic remodeling in kidney aging through transcriptional regulator GLIS1.

BMC Biol

December 2024

Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110001, China.

Background: Age-related kidney impairment, characterized by tubular epithelial cell senescence and renal fibrosis, poses a significant global public health threat. Although N6-methyladenosine (m6A) methylation is implicated in various pathological processes, its regulatory mechanism in kidney aging remains unclear.

Methods: An m6A-mRNA epitranscriptomic microarray was performed to identify genes with abnormal m6A modifications in aged human kidney tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!