The ability of plants to uptake nutrients from mineral dust lying on their foliage may prove to be an important mechanism by which plants will cope with increasing CO levels in the atmosphere. This mechanism had only recently been reported and was shown to compensate for the projected dilution in plants ionome. However, this phenomenon has yet to be thoroughly studied, particularly in terms of the expected trends under different dust types and varying atmospheric CO concentrations, as projected by the IPCC. We treated plants grown under ambient (415 ppm) and elevated CO (850 ppm) conditions with either desert dust, volcanic ash, and fire ash analogues by applying it solely on plant foliage and studied their Rare Earth Elements concentrations and patterns. The Rare Earth Elements compositions of the treated plants originated from the dust application, and their incorporation into the plants led to a significant increase in plants vitality, evident in increased photosynthetic activity and biomass. Two trends in the foliar nutrient uptake mechanism were revealed by the Rare Earth Elements, one is that different treatments affected the plant in decreasing order volcanic ash > desert dust > fire ash. The second trend is that foliar intake becomes more significant under elevated CO, an observation not previously seen. This testifies that the use of Rare Earth Elements in the study of foliar nutrient uptake, and other biological mechanisms is fundamental, and that foliar pathways of nutrient uptake will indeed become more dominant with increasing CO under expected atmospheric changes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174695DOI Listing

Publication Analysis

Top Keywords

rare earth
20
earth elements
20
nutrient uptake
16
foliar nutrient
12
study foliar
8
treated plants
8
desert dust
8
volcanic ash
8
fire ash
8
plants
7

Similar Publications

Dissolution Mechanism of YbOF in (LiF-CaF) Molten Salt.

Molecules

January 2025

School of Metallurgical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.

The dissolution mechanism of YbOF in a fluoride-containing (LiF-CaF) molten salt is the basis for analyzing the structure of the resulting medium and optimizing the electrolytic preparation of rare-earth Yb alloys. In this study, isothermal saturation was used to analyze solubility changes of YbOF in the (LiF-CaF). system.

View Article and Find Full Text PDF

Honeydew honey is less studied than nectar honey, although it is characterized by peculiar nutritional properties. This is mainly due to its challenging production, which leads to easy counterfeiting and difficult valorization. This contribution aims to provide a comprehensive characterization of the physico-chemical, palynological, functional, and food safety properties of a large sampling of honeydew honeys collected throughout Italy.

View Article and Find Full Text PDF

A new compound [Y(sq)(HO)] (Y-sq; sq = squarate (CO)) was prepared and structurally characterized. Since the RE-sq family (RE = Y, Dy, Yb, Lu) gave isostructural crystals, the objective of this study is to explore the effects of diamagnetic dilution on the SIM behavior through systematic investigation and comparison of diamagnetically diluted and undiluted forms. The 1%-Diluted Dy compounds, Dy@Y-sq and Dy@Lu-sq, showed AC magnetic susceptibility peaks without any DC bias field (), whereas undiluted Dy-sq showed no AC out-of-phase response under the same conditions.

View Article and Find Full Text PDF

Porous Single-Crystalline Rare Earth Phosphates Monolith to Enhance Catalytic Activity and Durability.

Molecules

January 2025

Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

Rare earth phosphate (XPO) is an extremely important rare earth compound. It can exhibit excellent activity and stability in catalytic applications by modifying its inherent properties. Porous single-crystalline (PSC) PrPO and SmPO with a large surface area consist of ordered lattices and disordered interconnected pores, resulting in activity similar to nanocrystals and stability resembling bulk crystals.

View Article and Find Full Text PDF

A Photocontrolled Molecular Rotor Based on Azobenzene-Strapped Mixed (Phthalocyaninato)(Porphyrinato) Rare Earth Triple-Decker.

Molecules

January 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex is reported. Electronic absorption and H NMR spectra manifested the reversible isomerization of the rotor between the configuration and the configuration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!