Methane, a potent greenhouse gas, requires sustainable mitigation strategies. Here, the microbial upcycling of methane to phytoene, a valuable colorless carotenoid with applications in the cosmeceutical industry was demonstrated. To achieve this goal, a stepwise metabolic engineering approach was employed in Methylocystis sp. MJC1, a methane-oxidizing bacterium. The incorporation of crtE and crtB genes from Deinococcus radiodurans R1 established the phytoene biosynthetic pathway. This pathway was fine-tuned through promoter optimization, resulting in a phytoene production of 450 μg/L from 37 mmol/L methane. Disrupting the ackA gene reduced a by-product, acetate, by 50 % and increased phytoene production by 56 %. Furthermore, overexpressing the dxs gene boosted phytoene titer 3-fold. The optimized strain produced 15 mg/L phytoene from 2 mol/L methane in fed-batch fermentation, a 4-fold increase in phytoene titer and 4-fold in yield. This demonstrates Methylocystis sp. MJC1's potential for efficient phytoene production and presents a novel approach for greenhouse gas reduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131116 | DOI Listing |
Plants (Basel)
January 2025
Agricultural College, Yanbian University, Yanji 133002, China.
L. (Jinhuakui, JHK) is widely cultivated for its pharmacological properties owing to its high flavonoid content and is commonly used as a garden landscape plant. However, the absence of an efficient genetic transformation system poses significant challenges for functional gene studies in this species.
View Article and Find Full Text PDFMar Drugs
January 2025
College of Food Science and Engineering, Ningbo University, Ningbo 315211, China.
is an important source of natural β-carotene (containing and isomers) for industrial production. The phytohormone salicylic acid (SA) has been proven to have impacts on the stress resistance of higher plants, but research on microalgae is currently unclear. In this study, the effects of SA on the growth, biochemical composition, antioxidant enzyme activity, key enzymes of β-carotene synthesis, and cis-and trans-isomers of β-carotene in under different salt concentrations were investigated.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, València, Spain.
Plant carotenoids are plastid-synthesized isoprenoids with roles as photoprotectants, pigments, and precursors of bioactive molecules such as the hormone abscisic acid (ABA). The first step of the carotenoid biosynthesis pathway is the production of phytoene from geranylgeranyl diphosphate (GGPP), catalyzed by phytoene synthase (PSY). GGPP produced by plastidial GGPP synthases (GGPPS) is channeled to the carotenoid pathway by direct interaction of GGPPS and PSY enzymes.
View Article and Find Full Text PDFCRISPR J
January 2025
Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!