The recent global population explosion has increased people's food demand. To meet this demand, huge amounts of nitrogen (N) fertilizer have been applied in the worldwide. However, ammonia (NH) volatilization is one of the primary factors of N loss from soil after N application causing decrease crop N utilization efficiency and productivity. Incubation experiments were conducted on an acidic clayey soil with two different N sources (urea and anaerobic digestion effluent; ADE), two differently-produced biochars, and three biochar application rates (0%, 0.25%, and 1.0% w/w). Ammonia volatilization was lower from urea (14.0-23.5 mg N kg) and ADE (11.3-21.0 mg N kg) with biochar application than those without biochar (40.1 and 26.2 mg N kg from urea and ADE alone, respectively). Biochar application significantly mitigated volatilization and reduction percentages for urea and ADE were 40%-64% and 18%-55%, respectively. 1.0% biochar application mitigated volatilization significantly compared to 0.25% application regardless of N source and biochar types. Possible mechanism for volatilization mitigation for urea and ADE were increased N immobilization by soil microorganisms and accelerated net nitrification rate due to increased soil nitrifying bacteria, respectively. Overall, our results clarified different mechanisms for N volatilization mitigation from different (inorganic vs. organic) N sources with biochar application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.142872DOI Listing

Publication Analysis

Top Keywords

biochar application
20
ammonia volatilization
12
urea ade
12
application mitigated
8
mitigated volatilization
8
volatilization mitigation
8
volatilization
7
application
7
biochar
7
soil
5

Similar Publications

Herein, a citrus processing wastewater-based biorefinery has been developed manufacturing essential oils, polyphenols and bacterial cellulose. Liquid-liquid extraction was evaluated for isolation of essential oils assessing different organic solvents, recovering 0.45 kg of essential oils per m of wastewater using n-heptane.

View Article and Find Full Text PDF

Hydrogen production from biomass pyrolysis is attractive since it allows for green hydrogen production through feedstock and thermal conversion. However, the key limiting factors for hydrogen production are the high oxygen content, uneven heating of biomass pellets during the slow heating process, and insufficient depolymerization due to low reaction temperatures (low gas yields and low hydrogen content). To address these challenges, fast pyrolysis of super Arundo in NaOH-NaCO molten salt was carried out in this paper at 450 °C, 550 °C and 650 °C.

View Article and Find Full Text PDF

Enhancing indigenous plant growth in metal(loid) contaminated soil using biochar.

Chemosphere

January 2025

Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea. Electronic address:

Soil around mines contaminated with metal(loid) is not suitable for growing plants and it is necessary to select indigenous plants with tolerance for metal(loid) and ameliorate metal toxicity in soil using soil amendments. Therefore, the purpose of this study was to improve the soil environment to make it suitable for plant growth by treating chicken manure derived-biochar in soil contaminated with arsenic (As), cadmium (Cd), and lead (Pb). Biochar application increased soil pH and significantly reduced bioavailable As, Cd and Pb, thereby lowering toxicity in plants.

View Article and Find Full Text PDF

Optimizing FeS crystallinity of sulfidated nZVI to enhance electron transport capacity for clothianidin efficient degradation: Regulation of biochar pyrolysis temperature.

J Hazard Mater

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. Electronic address:

Clothianidin (CTD), a highly water soluble neonicotinoid insecticide, easily enters water through runoff. Developing eco-friendly materials to degrade CTD is essential. Nano zero valent iron (nZVI) is effective for contaminant removal, but it deactivates due to agglomeration.

View Article and Find Full Text PDF

In the current work, three adsorbent materials were developed: biochar derived from date palm fiber (C), date palm fiber biochar/chitosan nanoparticles (CCS), and biochar/chitosan nanoparticle composite supplemented with glutamine (CCSG). These compounds were used as solid adsorbents to remove As from polluted water. Several characterization approaches were used to investigate all the synthesized solid adsorbents, including thermogravimetric analysis, N adsorption/desorption isotherm, scanning electron microscopy, transmission electron microscopy (TEM), attenuated total reflectance with Fourier transform infrared, and zeta potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!