The uncontrolled disposal of N95 face masks, widely used during the recent COVID-19 pandemic can release significant amounts of microplastics and other additives into aquatic bodies. This study aimed to: (i) to quantify and analyze the released microplastics and heavy metals from N95 face masks weathered for various time periods (24, 48, 72, 96, 120, and 144 h) and (ii) to assess the cytotoxicity potential of the leachates on a model organism, freshwater alga Scenedesmus obliquus. The mask leachates contained microplastics, polypropylene in different shapes and sizes, and heavy metals like Cu, Cd, and Zn. The leachates significantly reduced cell viability and increased reactive oxygen species (ROS) generation, antioxidant enzyme activity, and membrane damage. The effects were also accompanied by a significant drop in the photosynthetic yield. All of the examined parameters indicated a dose-response relationship, with longer leaching periods resulting in higher microplastic concentrations. Mask leachates severely damaged the structural integrity of the algal cells, as seen in scanning electron microscopy images. The findings of our study confirm that the releases from disposable N95 face masks pose a severe threat to freshwater microalgae, and the cascading effects would harm the aquatic ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142851 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!