Traumatic brain injury (TBI) heterogeneity remains a critical barrier to translating therapies. Identifying final common pathways/molecular signatures that integrate this heterogeneity informs biomarker and therapeutic-target development. We present the first large-scale murine single-cell atlas of the transcriptomic response to TBI (334,376 cells) across clinically relevant models, sex, brain region, and time as a foundational step in molecularly deconstructing TBI heterogeneity. Results were unique to cell populations, injury models, sex, brain regions, and time, highlighting the importance of cell-level resolution. We identify cell-specific targets and previously unrecognized roles for microglial and ependymal subtypes. Ependymal-4 was a hub of neuroinflammatory signaling. A distinct microglial lineage shared features with disease-associated microglia at 24 h, with persistent gene-expression changes in microglia-4 even 6 months after contusional TBI, contrasting all other cell types that mostly returned to naive levels. Regional and sexual dimorphism were noted. CEREBRI, our searchable atlas (https://shiny.crc.pitt.edu/cerebri/), identifies previously unrecognized cell subtypes/molecular targets and is a leverageable platform for future efforts in TBI and other diseases with overlapping pathophysiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578855PMC
http://dx.doi.org/10.1016/j.neuron.2024.06.021DOI Listing

Publication Analysis

Top Keywords

single-cell atlas
8
traumatic brain
8
brain injury
8
cell-specific targets
8
tbi heterogeneity
8
models sex
8
sex brain
8
tbi
5
atlas deconstructs
4
heterogeneity
4

Similar Publications

Multiomic characterization, immunological and prognostic potential of SMAD3 in pan-cancer and validation in LIHC.

Sci Rep

January 2025

Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.

SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken.

View Article and Find Full Text PDF

The fallopian tube undergoes extensive molecular changes during the menstrual cycle and menopause. We use single-cell RNA and ATAC sequencing to construct a comprehensive cell atlas of healthy human fallopian tubes during the menstrual cycle and menopause. Our scRNA-seq comparison of 85,107 pre- and 46,111 post-menopausal fallopian tube cells reveals substantial shifts in cell type frequencies, gene expression, transcription factor activity, and cell-to-cell communications during menopause and menstrual cycle.

View Article and Find Full Text PDF

Infiltrating plasma cells maintain glioblastoma stem cells through IgG-Tumor binding.

Cancer Cell

December 2024

National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, China; Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China. Electronic address:

Glioblastoma is a highly aggressive primary brain tumor with glioblastoma stem cells (GSCs) enforcing the intra-tumoral hierarchy. Plasma cells (PCs) are critical effectors of the B-lineage immune system, but their roles in glioblastoma remain largely unexplored. Here, we leverage single-cell RNA and B cell receptor sequencing of tumor-infiltrating B-lineage cells and reveal that PCs are aberrantly enriched in the glioblastoma-infiltrating B-lineage population, experience low level of somatic hypermutation, and are associated with poor prognosis.

View Article and Find Full Text PDF

Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.

View Article and Find Full Text PDF

The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!