A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular classification improves preoperative risk assessment of endometrial cancer. | LitMetric

Molecular classification improves preoperative risk assessment of endometrial cancer.

Gynecol Oncol

Gynecologic Oncology Unit, Gynecology Department. Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.

Published: October 2024

Objective: We aimed to evaluate the performance of endometrial cancer (EC) molecular classification in predicting extrauterine disease after primary surgery alone and in combination with other clinical data available in preoperative setting.

Methods: Retrospective single-center observational study including patients with endometrial adenocarcinoma treated with primary surgery between December 1994 and May 2022. Molecular profiling was performed using immunohistochemistry of p53, MLH1, PMS2, MSH2 and MSH6; and KASP genotyping of the 6 most common mutations of POLE gene. Clinical, pathological and imaging information was reviewed. Logistic regression, regression trees and random forest classification techniques (CART) were performed.

Results: We enrolled 658 patients, 47 with POLEmut (7.1%), 234 with MMRd (35.6%), 95 with p53abn (14.4%) and 282 with NSMP (42.8%) tumors. Advanced stage after primary surgery (III-IV FIGO 2009) was diagnosed in 11.7% of patients, p53abn tumors showed increased extrauterine spread (34.1%) and nodal involvement (30.1%) (p < .001). In multivariate analysis, only p53abn subgroup (aOR = 16.0, CI95% = 1.5-165.1) and radiological suspicion of extrauterine disease (aOR = 24.2, CI95% = 12.2-48.2) independently predicted the finding of extrauterine disease after primary surgery. In patients with preoperative uterine-confined disease, deep myometrial and cervical involvement in radiological assessment and p53abn molecular subtype were the best variables to identify patients at-risk of occult extrauterine disease after the staging surgery.

Conclusion: EC molecular classification is more accurate than histotype or grade in preoperative biopsy to predict advanced disease, and together with imaging tests are the most reliable preoperative information. This work provides an initial framework for using molecular information preoperatively to tailor surgical treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygyno.2024.07.003DOI Listing

Publication Analysis

Top Keywords

primary surgery
12
molecular classification
8
endometrial cancer
8
classification improves
4
improves preoperative
4
preoperative risk
4
risk assessment
4
assessment endometrial
4
cancer objective
4
objective aimed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!