Integrated MFC-MBR systems effectively remove antibiotics and control the release of antibiotic resistance genes (ARGs). However, the fouling layers on membranes can potentially act as reservoirs for ARGs. This study aims to elucidate the roles of membrane fouling layers and levels in influencing sulfamethoxazole (SMX) removal and ARGs control within an MFC-MBR system. Our findings demonstrate that low-intensity bioelectricity (400-500 mV) mitigates membrane fouling rates. The membrane fouling layer significantly contributes (39%-47%) to SMX removal compared to the cathode/anode zones. Higher extracellular polymeric substance (EPS) content and a lower protein/polysaccharide (PN/PS) ratio favor SMX removal by the membrane fouling layer. Across different levels of membrane fouling, the PN/PS ratio rather than EPS concentration plays a crucial role in SMX removal efficiency. The MFC-MBR with low fouling achieved superior SMX removal (69.1%) compared to medium (54.3%) and high fouling conditions (46.8%). The presence of ARGs in the membrane fouling layer increases with fouling formation, with intrinsic ARGs prevailing. Dense membrane fouling layers effectively retain ARGs, thereby reducing the risk of extracellular ARGs (eARGs) diffusion in effluents. These results provide insights into controlling ARGs in MFC-MBR systems and underscore the significant role of membrane fouling layers in antibiotics and ARGs removal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.121876 | DOI Listing |
Mar Pollut Bull
January 2025
Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, PR China; Dalian Key Laboratory of Internal Combustion Engine Tribology and Reliability Engineering, Dalian 116026, PR China. Electronic address:
As a global challenge, marine biofouling is causing serious economic losses and adverse ecological impacts. In recent years, a variety of promising and environmentally friendly anti-fouling strategies have emerged, among which the excellent anti-fouling performance of bionic autocrine coatings has been recognized. However, bionic autocrine coatings still suffer from uncontrollable secretion behavior, poor mechanical stability, and poor abrasion resistance.
View Article and Find Full Text PDFSci Total Environ
January 2025
Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, 519087 Zhuhai, China.
The new EU Urban Wastewater Treatment Directive requires stricter limits introducing quaternary treatments and poses significant challenges to achieving a sustainable environment. Advanced membrane-based treatment processes combined with mathematical models can be a good solution for facing the challenges above. Most existing literature on membrane filtration models primarily focuses on membrane bioreactors, lacking mechanistic models on ultrafiltration (UF) membranes.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China. Electronic address:
Residual aluminum (Al) is a growing pollutant in nanofiltration (NF) membrane-based drinking water treatment. To investigate the impact of distinct Al species fouling layers on gypsum scaling during NF, gypsum scaling tests were conducted on bare and three Al-conditioned (AlCl-, Al, and Al-) membranes. The morphology of gypsum, the role of Al species on Ca adsorption during gypsum scaling, and the interactions between gypsum crystals and Al-conditioned membranes were investigated.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China.
Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.
View Article and Find Full Text PDFACS ES T Water
January 2025
Department of Civil Engineering, The University of British Columbia, 6250 Applied Sciences Lane, Vancouver, British Columbia V6T 1Z4, Canada.
The present study evaluated the performance of a full-scale gravity-driven membrane filtration system with passive hydraulic fouling control (PGDMF) for drinking water treatment in a small community over a 3-year period. The PGDMF system consistently met the design flow and regulated water quality/performance parameters (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!