Magnetic biochar serves as adsorbents and catalyst supports for the removal of antibiotics from wastewater: A review.

J Environ Manage

Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia. Electronic address:

Published: August 2024

Numerous antibiotics are being released into the natural environment through wastewater. As antibiotic usage increases annually, its detrimental impact on the environment is escalating. Addressing environmental sustainability and human health requires significant attention towards antibiotic removal. In recent years, magnetic biochar (MBC) has gained widespread application in water treatment due to its exceptional adsorption and catalytic degradation capabilities. Antibiotics such as sulfamethoxazole (SMX), tetracycline (TC), ciprofloxacin (CIP), and others commonly exhibit an adsorption capacity by MBC ranging from 5 mg/g to 900 mg/g. Moreover, MBC typically removes over 90% of these antibiotics within 60 min. The effectiveness of antibiotic removal is significantly influenced by various preparation and modification methods. Furthermore, the incorporation of magnetism enables the material to be recycled and reused multiple times, thereby reducing consumption costs. This article discusses recent studies on antibiotic removal using MBC. It has been observed that variations in the selection of raw material and preparation procedures significantly affect antibiotic removal, while the mechanisms involved in antibiotic removal remain ambiguous. Additionally, it has been noted that the removal process may lead to secondary pollution and high preparation costs. Therefore, this review comprehensively outlines the utilization of MBC in the removal of antibiotics from wastewater, including aspects such as modification, preparation, removal mechanism, and factors influencing removal, and providing recommendations for antibiotic development. The aim is to offer researchers a clear understanding to advance the field of MBC materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.121872DOI Listing

Publication Analysis

Top Keywords

antibiotic removal
20
removal
10
magnetic biochar
8
removal antibiotics
8
antibiotics wastewater
8
antibiotic
7
mbc
6
antibiotics
5
biochar serves
4
serves adsorbents
4

Similar Publications

Separation of Antibiotics Using Two Commercial Nanofiltration Membranes-Experimental Study and Modelling.

Membranes (Basel)

November 2024

Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.

The widespread use of antimicrobial drugs has contributed to the increasing trace levels of contaminants in the environment, posing an environmental problem and a challenge to modern-day medicine seeking advanced solutions. Nanofiltration is one such breakthrough solution for the selective removal of antibiotics from wastewater due to their high efficiency, scalability, and versatility. This study examines the separation of antibiotics (sulfamethoxazole (SMX), trimethoprim (TMP), and metformin (MET), respectively) using commercially available membranes with an emphasis on AFC membranes (AFC 30 and AFC 80).

View Article and Find Full Text PDF

Biotransformation of the Fluoroquinolone Antibiotic, Levofloxacin, by the Free and Immobilized Secretome of .

J Fungi (Basel)

December 2024

Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia.

Antibiotics play a crucial role in human and animal medical healthcare, but widespread use and overuse of antibiotics poses alarming health and environmental issues. Fluoroquinolones constitute a class of antibiotics that has already become ubiquitous in the environment, and their increasing use and high persistence prompt growing concern. Here we investigated a fungal secretome prepared from the white-rot fungus , which is able to effectively degrade the environmentally persistent fluoroquinolone, levofloxacin.

View Article and Find Full Text PDF

Cationic hydrogel particles (CHPs) crosslinked with glutaraldehyde were synthesized and characterized to evaluate their removal capacity for two globally consumed antibiotics: amoxicillin and sulfamethoxazole. The obtained material was characterized by FTIR, SEM, and TGA, confirming effective crosslinking. The optimal working pH was determined to be 6.

View Article and Find Full Text PDF

The objective of this study was to assess the level of knowledge and attitude about the etiology, diagnosis, and management of peri-implantitis among dental practitioners. An online cross-sectional study on 303 dentists in Saudi Arabia was conducted. A closed-ended survey consisting of 28 questions was designed.

View Article and Find Full Text PDF

Highly efficient photocatalysts for degrading persistent antibiotics and synthetic dye pollutants under visible light are crucial for sustainable environmental remediation. In this study, we engineered a novel BiMoO (BMO)/NiAl-LDH (layered double hydroxide) hybrid catalyst with a unique 2D/2D heterostructure, optimized for the visible-light-driven elimination of ciprofloxacin (CPF) and hazardous synthetic dyes such as rhodamine B and methylene blue. The optimized BMO-30/LDH hybrid demonstrated exceptional photocatalytic performance, achieving nearly complete degradation of CPF and synthetic dyes with high mineralization efficiency, surpassing many previously reported state-of-the-art photocatalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!