A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Safety assessment for autonomous vehicles: A reference driver model for highway merging scenarios. | LitMetric

Safety assessment for autonomous vehicles: A reference driver model for highway merging scenarios.

Accid Anal Prev

State Key Laboratory of Automotive Simulation and Control, Jilin University, Jilin, 130025, China. Electronic address:

Published: October 2024

Driver models are crucial for the safety assessment of autonomous vehicles (AVs) because of their role as reference models. Specifically, an AV is expected to achieve at least the same level of safety performance as a careful and competent driver model. To make this comparison possible, quantitative modeling of careful and competent driver models is essential. Thus, the UNECE Regulation No. 157 proposes two driver models as benchmarks for AVs, enabling safety assessment of AV longitudinal behaviors. However, these two driver models are unable to be applied in non-car-following scenarios, limiting their applications in scenarios such as highway merging. To this end, we propose a careful and competent driver model for highway merging (CCDM2) scenarios using interpretable reinforcement learning-based decision-making and safety constraint control. We compare our model's safe driving capabilities with human drivers in challenging merging scenarios and demonstrate the "careful" and "competent" characteristics of our model while ensuring its interpretability. The results indicate the model's capability to handle merging scenarios with even better safety performance than human drivers. This model is of great value for AV safety assessment in merging scenarios and contributes to future reference driver models to be included in AV safety regulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aap.2024.107710DOI Listing

Publication Analysis

Top Keywords

driver models
20
safety assessment
16
merging scenarios
16
driver model
12
highway merging
12
careful competent
12
competent driver
12
safety
8
assessment autonomous
8
autonomous vehicles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!