Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Driver models are crucial for the safety assessment of autonomous vehicles (AVs) because of their role as reference models. Specifically, an AV is expected to achieve at least the same level of safety performance as a careful and competent driver model. To make this comparison possible, quantitative modeling of careful and competent driver models is essential. Thus, the UNECE Regulation No. 157 proposes two driver models as benchmarks for AVs, enabling safety assessment of AV longitudinal behaviors. However, these two driver models are unable to be applied in non-car-following scenarios, limiting their applications in scenarios such as highway merging. To this end, we propose a careful and competent driver model for highway merging (CCDM2) scenarios using interpretable reinforcement learning-based decision-making and safety constraint control. We compare our model's safe driving capabilities with human drivers in challenging merging scenarios and demonstrate the "careful" and "competent" characteristics of our model while ensuring its interpretability. The results indicate the model's capability to handle merging scenarios with even better safety performance than human drivers. This model is of great value for AV safety assessment in merging scenarios and contributes to future reference driver models to be included in AV safety regulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aap.2024.107710 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!