Food proteins represent a vital source of self-assembling peptides, with hydrogels constructed through peptide self-assembly exhibiting widespread utility in the food sector. This review aims to provide a recent research progress in preparation and characterization of hydrogels from food-derived peptides. Also, the self-assembly mechanisms and the impact of factors are discussed. Presently, food-derived self-assembling peptide-based hydrogels can be synthesized using either physical or chemical methodologies and evaluated through methodologies such as microscopic, spectroscopic, and rheological assessment. The self-assembly of food-derived peptides is hierarchically formed by non-covalent interactions, including hydrogen bond and hydrophobic interactions, where variables such as temperature and pH intricately modulate the assembly mechanism. The association between peptide sequence and hydrogel structure in the self-assembly mechanism is also discussed, which remains to be further explored. The present review contributes to application of food-derived peptide-based hydrogels in the fields of food, nutrition and material sciences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.140397 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!