Benzylalkyldimethylethyl ammonium compounds (BAC) and polyvinyl chloride microplastics (PVC MPs), as the frequently detected pollutants in wastewater treatment plants (WWTPs), have attracted more concerns on their ecosystem risks. Therefore, this study investigated how the sulfur autotrophic denitrification (SAD) system responded to the single and joint stress of PVC MPs (1, 10 and 100 mg/L) and BAC (0.5, 5 and 10 mg/L). After 100 days of operation, the presence of 10 mg/L BAC led to obviously inhibitory effects on system performance and microbial metabolic activity. And the additions of PVC MPs or/and BAC stimulated the proliferation of intracellular resistance genes (RGs), whereas exposure to BAC increased the abundances of extracellular RGs and free RGs in water more significantly. Compared to the joint stress, BAC single stress resulted in higher abundances of free RGs in water, which further increased the risk of RGs propagation. Moreover, the interaction between mobile genetic elements and extracellular polymeric substances further increased the spread of RGs. Pathogens might be the potential hosts of RGs and enriched in SAD system and plastisphere, thereby leading to more serious ecological risks. This study will broaden the understanding of the environmental hazards posed by PVC MPs and BAC in WWTPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135197 | DOI Listing |
Bioresour Technol
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China. Electronic address:
Microplastics (MPs) are prevalent in wastewater treatment systems, and their behavior is further complicated after undergoing aging processes. This study explored the impact of original and aged polyvinyl chloride (PVC) MPs on wastewater treatment performance and bacterial communities. Results revealed that Fenton-aging treatment induced surface roughening of the MPs and altered their chemical properties.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China. Electronic address:
Polyvinyl chloride (PVC) is a widely used plastic, but the potential risk of heavy metal additive release from PVC microplastics (MPs) has not been fully explored. This study evaluates the release of lead (Pb) from recycled PVC MPs under natural conditions. The released Pb concentration in the dark was 1079.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:
The co-existence of microplastics (MPs) and organic pollutants on agricultural ecosystems pose potential implications for both food safety and environmental integrity. The combined effects of MPs with Dechlorane Plus (DP), a newly listed banned flame retardant, remain unknown. This study explores the biological responses of soybean plants to exposure from polyethylene (PE) and polyvinyl chloride (PVC) MPs and DP.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:
Soil pollution by microplastics (MPs) and cadmium (Cd) poses significant threats to agricultural production, yet their combined toxicity and underlying mechanisms remain poorly understood. Here, we examined the effects of three types of MPs-polyethylene (PE), polyvinyl chloride (PVC) and polypropylene (PP)-with particle sizes of 150 μm and 10 μm, in combination with Cd stress (5 mg/kg) on tomato (Solanum lycopersicum L.) growth.
View Article and Find Full Text PDFSci Total Environ
December 2024
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China. Electronic address:
Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!