Simulation of hexavalent chromium removal by electrocoagulation using iron anode in flow-through reactor.

J Hazard Mater

Civil and Environmental Engineering, Northeastern University, Boston MA 02115, United States. Electronic address:

Published: September 2024

AI Article Synopsis

  • - The study presents a model for reducing and precipitating hexavalent chromium (Cr(VI)) using electrocoagulation with iron electrodes, assuming negligible adsorption or direct reduction at low chromium concentrations.
  • - A batch reactor simulation is developed to account for various chemical reactions, validated through previous experimental data, considering factors like initial chromium concentration, pH, and current density.
  • - The model integrates ionic transport in MATLAB with geochemical reactions in PHREEQC and suggests specific operational parameters for effective chromium removal, indicating an ideal current density of 0.05-0.3 mA/cm.

Article Abstract

An electrocoagulation (EC) model is developed for hexavalent chromium reduction and precipitation, using iron electrodes. Parallel removal mechanisms such as adsorption of chromium on ferrihydrite and direct reduction at the cathode is assumed negligible due to low concentration of Cr(VI). The reaction model presented for batch system represents species complexation, precipitation/dissolution, acid/base, and oxidation-reduction reactions. Batch reactor simulation is verified using experimental data obtained by Sarahney et al. (2012), where the effect of initial chromium concentration, pH, volumetric current density, and ionic strength is considered (Sarahney et al., 2012). The model couples multicomponent ionic transport in MATLAB with chemical reaction model in PHREEQC, as a widely used computational programming tool and a geochemical reaction simulator with comprehensive geochemistry databases. The suggested current density is 0.05-0.3mA/cm and the surface to volume ratio in batch reactor is considered 0.017 1/cm. Design parameters are presented for operation of a flow-through hexavalent chromium removal using electrocoagulation by iron electrode to treat Cr(VI) in range of 10-50 mg/L. The operational parameters for a flow-through EC reactor for Cr(VI) removal is suggested to follow [Formula: see text] .

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135195DOI Listing

Publication Analysis

Top Keywords

hexavalent chromium
12
chromium removal
8
removal electrocoagulation
8
electrocoagulation iron
8
flow-through reactor
8
reaction model
8
batch reactor
8
sarahney 2012
8
current density
8
chromium
5

Similar Publications

The introduction of structural defects can improve the charge separation efficiency of metal-organic frameworks (MOFs)-based photocatalysts, which however come with suboptimal decontamination performance, due to steric hindrance and limited binding capacity of the involved modulators. In this work, hydroxyl group capturing the advantages of both worlds was utilized as new modulator to improve the photocatalytic performance of Fe-based defective MOFs. Benefited from its low steric effect and strong coordination bonding capability, hydroxyl-induced defects in Fe-MOF contributed to a nearly 8-fold increase of rate constant for the photocatalytic removal of hexavalent chromium (Cr(VI)) compared to that of pristine one, which also exceeded the defective one induced by acetic acid as modulator.

View Article and Find Full Text PDF

Synergistic transformation of Cr(VI) in lubricant degradation by bacterial consortium.

World J Microbiol Biotechnol

January 2025

Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing, 400067, China.

In recent years, it has become widely acknowledged that heavy metals are often present in oil-contaminated sites. This study utilized three specific types of microorganisms with different functions to construct a composite bacterial consortium for treating lubricant-Cr(VI) composite pollutants. The selected strains were Lysinbacillus fusiformis and Bacillus tropicus.

View Article and Find Full Text PDF

The global challenge of wastewater contamination, especially from persistent pollutants like radioactive isotopes and heavy metals, demands innovative purification solutions. Radioactive iodine isotopes (I and I), stemming from nuclear activities, pose serious health risks due to their mobility, bioaccumulation, and ionizing radiation, particularly impacting thyroid health. Similarly, hexavalent chromium, Cr(VI), is highly toxic and persistent in water, linked to cancer and other severe health issues.

View Article and Find Full Text PDF

Understanding the geochemical mechanisms governing hexavalent chromium (Cr(VI)) in groundwater is essential for mitigating health risks. However, the processes driving Cr(VI) accumulation and migration in loess regions remain insufficiently understood. This study investigated the occurrence, release, and migration mechanisms of Cr(VI) across different groundwater environmental units (GEUs) in the south-central Loess Plateau, China.

View Article and Find Full Text PDF

Hexavalent chromium (CrVI) is known to cause lung cancer among workers exposed to high concentrations in certain historical industries. It is also a toxic air contaminant considered to pose a potentially significant cancer risk at comparatively low concentrations in urban air. However, very limited data currently exist to quantify risk at low-concentration occupational or environmental exposures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!