Global land-use changes alter the delivery of fluvial dissolved organic matter (DOM) along land-to-sea continuum. To study how spatial variations in watershed anthropogenic disturbances control chemodiversity and reactivity of DOM exported to oceans, we used fluorescent and ultra-high-resolution mass spectrometry to investigate spatial and seasonal variations of DOM properties along two subtropical coastal rivers with contrasting anthropogenic land-use distributions (North and West tributaries of Jiulong River, southeast China). Dissolved organic carbon (DOC) concentration and humic- and protein-like fluorescent DOM (FDOM) intensities were high in the mixed urban-agricultural impacted upper North River and lower West River. DOM molecular signatures suggested that the urban-sourced DOM is dominated by bio-labile, S-rich compounds, whereas the agricultural-sourced DOM is characterized by a mixture of bio-labile CHONS and bio-refractory CHON. This anthropogenic-induced spatial variation in DOM signatures was especially prominent during the dry season. Molecular analysis indicated that heteroatomic-containing (phosphorus-sulfur-nitrogen) DOM compounds are more biologically degradable, whereas most of the heteroatom-depleted and highly unsaturated CHO was stable during transport. Due to a longer transit distance and reservoir impoundment in North River, the urban-sourced aliphatic compounds were largely microbially removed or transformed into bio-refractory components, resulting in lower DOC fluxes and an increase of recalcitrance in the DOM exported to the ocean. Conversely, shorter transit times for anthropogenic inputs from the middle/lower West River increased watershed yield and export fluxes of DOC with higher bio-lability. Our study documents that transit history plays a crucial role in assessing the fate of anthropogenic DOM along the land-to-ocean continuum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122084 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!